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Abstract

There are at least two practical motivations for the development
of theoretically optimum methods of performing an operation such as de-
modulation. The first is to determine, by calculation, the performance
of the optimum system for comparison with that of existing or proposed
practical systems, and the second is to determine the feasibility of imple-
menting the optimum system or some approximation of it. The former is
particularly useful in making decisions concerning the amount of effort
which should be expended on improving existing systems, and the latter
gives direction to that effort. The optimization must be with respect to

some specified performance parameter.

The operation studied here is that of demodulation of noisy, binary,
pulse-code-modulated waveforms. The performance parameter for which
the operation is optimized is error-probability. The minimum-error de-
modulation operation is determined for waveforms with and without inter-bit
dependence. It is assumed that this dependence results from statistical
dependence between data samples represented by the PCM '"words'' or code
groups, and that the demodulation decisions are made one-word-at-a-time,
but utilizing n statistically dependent, received noisy words. The noise is
assumed independent of the transmitted signal and additive and the number

of words utilized, n, is arbitrary.

For the special case of no inter-bit dependence the minimum
attainable error probabilities may be calculated directly for any signal-to-
noise condition, assuming band-limited white gaussian noise. A comparison
of these theoretical results with experimental results obtained independently
in two different laboratories indicates that for bit-error probabilities lower
than about 0. 05 the minimum error demodulator offers no significant im-

provement over conventional demodulators if no inter-bit dependence exists.




For independent, additive, band-limited white gaussian noise, a
method is developed for simulating with a digital computer the minimum-
error demodulation with statistical dependence between data samples.
Minimum error probabilities are then computed, by a monte-carlo method,
for gaussian data and for n =2 and n =1. This computation is done for
3-bit and 6 bit code words. The results are applicable regardless of the
waveforms used to represent the binary digits (or bits). These results
indicate that for word-error probabilities less than about 0.1, no very
significant power gains accrue from the use of statistical dependence in the
data unless the correlation coefficients between data samples is large (i. e.,
0.98 or greater) for a large number of transmitted samples. However, the
results also indicate that the effect of using the statistical dependence in
the data is to reduce errors in the high order (most significant) bits of the
code. Therefore the error amplitude reduction may be considerable even

if the reduction in error probability is not.

Possible implementations of the minimum-error demodulator as

well as some simpler approximate implementations are discussed briefly.
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INTRODUCTION

In demodulation, as in filtering and other operations on noise-
contaminated signals, a question of prime concern when contemplating
improvements in the operation is, '"How much improvement is theoretically
possible?'" Some measure of the '"goodness' of the operation (e. g., rms
error, error probability, etc.) must be selected if a quantitative answer to
this question is desired. For any selected measure of goodness (or per-
formance parameter'') there is generally a fundamental limitation on how
well the operation can be performed with given signal power and noise
conditions. Efforts to determine these limitations have led to the develop-
ment of theories of optimum operations such as the Wiener filter theory
(Reference 13) and theories regarding optimum detection of signals in
noise (see, for example, Reference 3). Such theoretical treatments provide
an optimum system (based on optimizing some performance parameter such
as rms error or probability of error) whose performance may be calculated
and compared with existing practical systems in order to determine the

improvement theoretically possible.

In Rauch's report on improved demodulation (Reference 11), the
maximum-likelihood demodulator is derived, assuming gaussian data and
additive gaussian noise, for a large class of modulation operators (e. g.,
FM, PM, AM, PAM, PDM, etc.). However, as pointed out in that report,
the results are not applicable to PCM (Pulse Code Modulation) even when
the distributions of the data and the noise random processes can be assumed
gaussian. Yet it appears that the maximum-likelihood criterion for de-
modulation should be a very meaningful one for PCM communications since
maximizing the probability of selecting correct transmitted signals at the

receiver is equivalent to minimizing the probability of error.

-1 -



This dissertation treats the PCM demodulation problem by de-
riving the minimum-error demodulator, assuming independent additive
noise. The error probabilities (vs. signal-to-noise ratios) attained by
this demodulator for band-limited white gaussian noise are then calcu-
lated. This is done first for completely random PCM signals (i. e., without
considering data statistics) and then for gaussian data with dependence be-
tween data samples. We thus obtain the lowest possible error probabilities
attainable under the assumed conditions, which we can compare with error
probabilities obtained with existing or proposed practical demodulation

schemes.

It should be noted that minimizing error probability does not in
general result in minimizing other cost functionals or performance para-
meters such as the mean square error of the quantity represented by the
code words. If error probability is not considered a satisfactory measure
of goodness, then it is desirable to optimize the demodulation operation
with respect to some performance parameter which is a satisfactory meas-
ure of goodness. Other performance parameters, or cost functionals, most
often considered are statistical measures of error amplitude such as mean-
square-error or mean-absolute-error. The statistical dependence between
data samples may be viewed as redundancy in the data. Since this statisti-
cal dependence is a statistical constraint upon the relative amplitudes of
the data samples it seems intuitively that the data redundancy could be used
more effectively for reducing some statistical measure of error amplitude
than for reducing the probability of error without regard to error ampli-
tude. The results obtained in this dissertation indicate this to be true.

The results also indicate that the minimum-error demodulation operation
developed here will be more effective in reducing statistical measures of
error amplitude than for reducing error probability even though the oper-

ation is optimized for the latter.




The interpretation of the meaning of a minimum-error-proba-
bility criterion for demodulation is not necessarily unique. It might be
interpreted as the criterion of selecting the most probable sequence of
data sample values over some interval of time including many data
samples, or it might be interpreted as the criterion of selecting the most
probable value for each sample in the sequence. These do not in general
give the same result. The latter interpretation is used in this dissertation
since selection of the most probable value for each sample, or PCM 'word,

yields the lowest possible word-error probability.

The theoretical optimum system may be impractical to construct
and use, but with sufficient intuition a practical '""near-optimum' system
might be devised (possibly by modification of the optimization process)
whose performance can then be compared with that of existing systems to
determine the improvement afforded, if any, and compared with the theo-
retical optimum to determine whether further significant improvement is

possible. Two such systems are briefly discussed in Chapter 6.

1"



Chapter 1

MINIMUM-ERROR DEMODULATION OF RANDOM

BINARY PCM WAVEFORMS

Let us first consider the minimum-error demodulation, or
estimation, of binary PCM signals which have no dependence between bits,
and which have been contaminated by independent additive band-limited white
gaussian noise. The signal notation used is indicated in Figure 1. A binary
PCM signal of duration T is divided into equal intervals of time, TB, called
'""bit-times' during each of which the signal may assume either of two speci-
fied waveforms. The binary character of the transmitted signals need not
be restricted to the use of two signal levels, but might be represented by
two specified functions of time, one of which represents a !'yes' bit and the
other of which represents a ''no'"' bit. For idealized PCM/AM, for example,

the two specified functions of time representing ''yes'' bits and '"'no'' bits are

sinusoids of the same frequency and phase but of different amplitudes.

If we wish to minimize the probability of error in estimating trans-
mitted signals we must select, for each received signal z(t), the trans-
mitted signal, y(t), which maximizes the inverse conditional probability

distribution of the transmitted signal, y(t), given the received signal, z(t):

p(z | y) fly)
gz)

r(y|z) =

where: p(z ) y) is the conditional probability density function of z(t) when
y(t) is known.
f(y) is the marginal probability distribution of the y(t) waveforms.
g(z) is the marginal probability density function of the z(t) wave-

forms.

The probability density functions, p(z |y) and g(z) are interpreted

as probability per unit volume of z-waveform space. We may consider the

-4 -
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co-ordinate values in the waveform space to be the time samples of a
band-limited waveform where the sampling rate is taken arbitrarily high
but finite. Then for finite T the waveform space is of finite dimension.

If dz is an infinitesimal hyper-volume in the waveform space, the relative
probabilities of the z-waveforms will be p(z | y)dz (a posteriori) or g(z)dz
(a priori). In the above equation the dz's of numerator and denominator

have been omitted since they cancel each other.

It has been shown (see Reference 14, page 69) that for independent,
additive, band-limited white gaussian noise of one-sided power spectral

2
height K :

plz | y) =K, exp( - —> f(z(t)-y(t))zdt (1.1)
K T

where K1 is a (normalizing) constant and the integration is over the interval
of time, T, occupied by the signal. The term ''band-limited white' here
means that the power spectrum is of uniform height, KZ, from zero frequency
to some arbitrarily large but finite frequency, W, and of zero height for all

higher frequencies.

For the random signals being considered in this chapter, all of
the possible binary PCM signals in the interval T are assumed to have equal
a priori probabilities. That is, f(y) is the same for all possible y's. Then

since g(z) is fixed for any specified z we may write

rly [ z) =K,(z) exp < — f (2(t) - y(t))zdt) (1.2)
K T

where KZ(Z) is constant with respect to y.

Hence the most probable transmitted signal, y(t), is the one which
gives the smallest value for the integral in (1. 2). But if during any bit-time
the PCM signal is one of two known waveforms, fl(t) or fz(t), then the y(t)
which gives the smallest value for this integral must give the smallest value

over each separate bit-interval, T Therefore, the most probable y(t) can

B
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be determined one-bit-at-a-time (assuming synchronization) by selecting
for each bit-time the transmitted signal, yB(t), (given received signal zB(t))

which maximizes the inverse conditional probability function:

1 2
ryg | zB) -K3(Z) exp (— —I-{-Z- j (z5(t) - YB(t)) dt) (1.3)
TB
(We assume that the bandwidth, W, of the band-limited white noise is large

compared to 1/T_.) Since such a selection has a greater probability of

B
being correct than does any other method of selection, it has a lower proba-
bility of being in error than does any other method of selection. A device
which makes such selection is therefore the minimum-error demodulator

for random binary PCM waveforms with independent, additive, band-limited

white gaussian noise. .

It has been shown (see, for example, Reference 7) that when the
binary character of the transmitted PCM signals is represented during.e.ach
bit-time by either of two known waveforms, fl(t) and fz(t), the bit-error

probability for such a device is:
-IBVI- x

| 2
PE=——1—-f e 12 gy (1.4)
\zr

-0
2
where /6 is the ratio of average signal power to the noise power in a
bandwidth equal to the bit rate or, equivalently, the ratio of signal energy per

bit to noise power per unit bandwidth.

2 1 2 2
ﬁ = 5 j (fl(t) +f2(t) ) dt (1.5)
2K T
B
) .
and X = ——— f f (t)f (t) dt (1. 6)
Ksz 1'77°2
T

B
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1f fl(t) and fz(t) have the same energy (i, e., J‘ fl(t)zdt =f fz(t)zdt)
TB TB

then eqn. (1. 3) can be written:

r(yB |zB) =K4(z) exp —fz—-j zB(t)be(t) dt (1.7)
T

B

where K4(z) is constant w.th respect to Yg*

Hence the minimum-error demodulation for this case can be
accomplished by correlating the received signal zB(t) during each bit-time
with each of the two possible transmitted signals, fl(t) and fz(t), and select-

ing the transmitted signal which correlates best with zB(t).

For the case where the binary character of the transmitted PCM
signals is represented by two signal levels, e.g., fl(t) =+ S and fz(t) =~ S,
the bit-by-bit correlation detection is equivalent to filtering the received

waveform with an aperture filter of aperture T _ and sampling its output at

B
the end of each bit-time. If the sample is greater than zero the correspond-
ing bit of the transmitted signal is assumed to have been + S, and if the

sample is less than zero the corresponding bit is assumed to have been - S.

.The.minimum bit-error probabilities can be obtained for random
binary PCM using the waveforms fl(t) and fz(t) corresponding to idealized
PCM/AM, PCM/PM and PCM/FM. We assume that there are many cycles
of the carrier occurring in one bit-time. That is TB'>> Z'rr/(JJC. For
100% modulated PCM/AM we have fl(t) = 2Ssin(¢J t+ ¢) and fz(t) =0
(S2 = average transmitted signal power). And frorh (1.5) and (1. 6) we get

(if TB>> 2n/ ) )
C

"

where B = 1/TB = bit rate

S
<

i
o

and



and from (1. 4)

_6 ,
_ 1 -x /2
(PE> B 2T j—‘oo © x (1.8)

PCM/AM
For PCM/PM we have fl(t) = V-Z—‘S sin (Q)ct + d>1) and fz(t) =\]-Z—'S sin (¢ ) t + ¢2),
c
and therefore, if TB>> 2w/ UC '

B=s/k (B

X =cos (¢1 - ¢2)

The optimum value of phase deviation, ¢, - ¢2, is 180 degrees since this

1
gives the lowest possible value (i.e. - 1) for OC and consequently the lowest

possible value for P Binary phase modulation with total phase deviation

E.
of 180 degrees is called ''phase-shift-keying' (PSK) and is exactly equivalent
to suppressed carrier PCM/AM. The minimum bit error attainable for this

type of modulation is, from (1.4):

L [P
P =——f X 12 gy (1.9)
E {Zn /
PCM/PSK oo

For PCM/FM it is often erroneously presumed that a higher devi-
ation ratio will result in a lower error probability. This conclusion is
usually based on the fact that the (filtered) video signal-to-noise ratio re-
sulting from reception of PCM/FM by a receiver with conventional discrimi-
nator can be either calculated or observed on an oscilloscope to be higher
for higher deviation ratio, and hence the conclusion that the error proba-
bility should decrease for higher deviation ratio. The invalidity of the con-
clusion is, of course, due to the implicit assumption that the video noise
amplitude distribution is independent of deviation. (This is discussed further

in Appendix III. )

That the bit-error probability cannot be made arbitrarily simall by
any means other than ihcreasing the signal power (or decreasing system

noise) is apparent from (1. 4) since the minimum value for X is -1, Hence
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the error probability for PCM/FM or any other binary PCM transmission
system can never be less than that for PCM/PSK (or suppressed carrier
PCM/AM) for which o =-1. What then is the minimum error probability

attainable for PCM/FM? For this case we have
fl(t) = y2'S sin (OL)1 t+ ¢1)
fz(t) = y2'S sin (CJZ t+ ¢2)

and ¢ is a function of C._)l, Q)Z, ¢1, and d)z. PCM/FM is treated in
Appendix I where it is found that for conventional PCM/FM, in which a
single oscillator is frequency modulated by the PCM waveform, the optimum
(minimum error probability) deviation ratio, D (D = ratio of total deviation
to bit rate) is 0. 715. This is in very good agreement with optimum deviation
ratios determined experimentally (References 15 and 16) using conventional
PCM/FM receiving equipment. It is also interesting to note that, due to
previous heuristic considerations and experimental results, deviation ratios

in the vicinity of 0.7 have previously been recommended for PCM/FM.

From Appendix I equation (I-4), the corresponding bit-error

1.1
" 1 P 212
P = f e 17 dx (1. 10)
E 1217

PCM/FM - oo
opt

probability is:

The treatment in Appendix I derives bit-error probability for PCM/FM
directly in terms of deviation ratio rather than using the parameter X ,
since deviation ratio is a more familiar parameter. The value of X for
the above case is, however, 0.21, which when substituted in (1. 4) gives the

same result.

The minimum-error probability (corresponding to optimum devi-
ation ratio) of (1. 10) is plotted as a function of ﬁ in Figure 2 along with

some experimentally measured results1 from References 15 and 16. The

1 A fourth measured curve, using phase-lock loop and D =.75,
reported in Reference 15, crosses the theoretical optimum curve -

and indicates about 1 db better than optimum at PE =10-% .




BIT ERROR PROBABILITY, F.

-11-

10°!

MEASUREMENTS WITH PHASE-LOCK
LOOP (D=75) REFERENCE i5, FIGURE 6-17,
LOWER CURVE

+ E: : =
3 : :

i

{44114

L

1A S ] 1 1 ]
2 ] — ’ aaa S

10

; ] -
10'3 1 1 1

MEASUREMENTS WITH

DISCRIMINATOR (D=7) REFERENCE 16
FIGURE II-3-l, LOWER CURVE
THEORETICAL OPTIMUM
IR O A R I A N A O S I 1 1
4 YJI]]I]!TT}‘W}_IJ | BRI | }
10"
__MEASUREMENTS WITH DISCRIMINATOR ==
(D=75) REFERENCE I5, FIGURE 6-2,
LOWER CURVE
10-5
:
‘o~6 1 jIT
2 4 6 8 10 12 14 16 18 20 22 24 26 28
B=—S—(dab)

8IS

Figure 2 Bit Error Probability vs B For PCM/FM



- 12 -

theoretical and experimental results are seen to be in very good agreement,
which indicates that if we do not make use of the a priori statistics of the
data (i.e., if we assume no dependence between bits) we cannot devise de-
modulaticn schemes for PCM/FM which will reduce the bit-error proba-
bility appreciably below that obtainable with conventional PCM/FM receiving
equipment with good synchronization. This remark applies only for bit-
error probabilities less than about .05 since no experimental results were

obtained for higher bit-error probabilities.

Some conclusions regarding PCM/FM and PCM/AM may be
drawn from the analytical results. By comparison of equations (1.8) and
(1.10) we see that, for a given noise spectrum and bit rate, PCM/AM re-
quires 0.8 db more power to accomplish a given bit-error probability than
does PCM/FM (both using "optimum'' demodulation). Also, by comparison
of equations (1. 10) and (1. 9) we see that PCM/FM requires 2. 2 db more
power than PCM/PSK (or suppressed carrier PCM/AM) for the same bit-

error probability.

For '"switched PCM/FM, ' i.e. PCM/FM resulting from non-
synchronous switching between two oscillators of frequencies wl and (4)2,
we note from Appendix I that the lowest error probability is obtained with

OJZ - (“'Jl =2mn B where n is any integer., And, from equation (I-11),
the resulting bit-error probability is the same as for PCM/AM. Hence
"switched PCM/FM!' requires 0.8 db more power to accomplish a given bit-

error probability than does conventional PCM/FM.

But the most important conclusion concerning further research in
improved PCM/FM demodulation is that, in view of the excellent comparison
between the experimental and theoretically optimum results of Figure 2, if
we do not make use of data statistics in the demodulation process we cannot
devise demodulation schemes for obtaining bit-error probabilities less than
. 05 with significantly less transmitted power than that required by con-

ventional PCM/FM receiving equipment with good synchronization.
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Similar results and conclusions could surely be obtained for
PCM/AM and PCM/PSK. But PCM/FM has been emphasized here be-
cause of availability of measured results from independent laboratories
and because most of the existing PCM telemetry systems utilize PCM/FM.
The gains available by use of a priori data statistics in demodulation of

binary PCM signals are investigated in the following chapters.



Chapter 2

MINIMUM-ERROR DEMODULATION OF BINARY PCM WAVEFORMS

WITH DEPENDENCE BETWEEN DATA SAMPLES

The notation used here is again that of Figure 1. The x(t), y(t),
and z(t) symbols represent signals existing over a time interval, T, at a
data source (transducer) output, transmitter output, and receiver input
respectively. For simplicity we treat a single data source. The extension
of our results to multiple data sources will be apparent. The transmitted
signal, y(t), is the serial binary PCM code waveform representing the
amplitudes of successive samples of the data, x(t). The received signal,

z(t), is the sum of y(t) and channel noise, n(t).

In Chapter 1, it was assumed that y(t) during any bit interval was
independent of y(t) during any other bit interval. But in many cases there
may be, for example, considerable statistical dependence between words
(or coded samples of data) one or more frames apart. In this case, the
probability distribution of the '""possible' PCM signals over the interval T
is not constant as assumed in Chapter 1, but is higher for waveforms which
exhibit this ""periodic dependence' than for waveforms which do not. Hence
the optimum demodulator derived for completely random PCM waveforms
is not necessarily optimum for these more realistic waveforms, and con-
siderable improvement in sensitivity might be gained by taking advantage

of this statistical dependence.

For data power spectra which extend from zero frequency to some
finite frequency, fI, and are zero for all higher frequencies we theoretically
can sample the data at ZfI samples per second and recover it with zero
interpolation error. The data samples in this case will be uncorrelated if
the spectrum amplitude is constant from zero frequency to fI. But for a non-
idealized data spectrum whose amplitude decreases less abruptly for higher

frequencies (e. g., inversely proportional to some power of the frequency)

- 14 -
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any finite sample rate results in a non-zero interpolation error and, in

general, a non-zero correlation between samples.

The types of non-ideal power spectra most realistic and useful
for representing data spectra are not known since the determination of
typical data spectra has received little attention in the past. But if for
purposes of illustration, and for maintaining simplicity, (and since some

results are available in Reference 8 for this case) we assume a 3rd order
k

6
1+ <f—f)
I

produced by passing white noise through a 3rd order, low-pass Butterworth

Butterworth spectrum, S(f) = --- that is, the spectrum

filter (the ideal data mentioned above is of "infinite order') --- we find that
if we sample it rapidly enough’so that we can interpolate with 1% rms in-
terpolation error we have a correlation coefficient of 0. 905 between ad-

'~ jacent samples. This is determined as follows:

If we interpolate the samples of 3rd order Butterworth data with
a Wiener optimum (minimum rms error) interpolation filter, the sampling
rate, fs, must be approximately ten times the break frequency, fI, of the
data spectrum if the rms interpolation error is to be one percent (see
Figure 5, Part 1 of Reference 8). The normalized autocorrelation function
for 3rd order Butterworth data is (see Table 3, Part 2, of Reference 8):
Wy T]

P(t)=1/28xp(~w1 ‘Tl)i-exp(- >

) cos (. 866 CUIIT I - w/3)

and for T =Ts =l/fs =2n/ws we get

P(Ts) =.905

similarly we find

p(ZTS) =, 677
p(3Ts) =.403

etc.
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Although little is known about the spectral characteristics of
typical measured or telemetered data, the possibility of such high corre-
lation between data samples raises the prospect of making use of this
correlation in the demodulation of telemetered data. If the correlation
coefficient between two samples were unity (i. e., the probability of the two
samples being identical is one), and if we used the finite-time-correlation

demodulation techniques of Chapter 1 (see equation (1.7) and the paragraph

following it) we could, by using both samples, obtain a specified error proba-

bility with half the signal power required by using only one sample. This
is due to the fact that when two noisy identical signals (noises uncorrelated,
but from same randdm process) are operated on by identical finite time
correlators whose outputs are summed, the signal component of the sum is
twice that of either correlator, but the rms value of the noise component of
the sum is only {2_‘ times that of either correlator. Hence the ratio of
signal amplitude to rms noise for the sum will be {ZT‘ times greater than
for a single correlator. Since the same result would be obtained by using
one sample with twice the signal power, a power gain of 3 db is made possi-
ble by using two data samples with unity correlation coefficient. We now
investigate the power gains made possible by correlation coefficients less

than unity between data samples.

The difficulty in deriving a maximum-likelihood demodulator for
PCM considering data statistics is a consequence of the difficulty in analyti-
cally relating the statistics of the modulated signals that are transmitted
with the statistics of the data (assumed known). The difficulty in relating
these statistics is due to the fact that a PCM signal is not a continuous
function of the modulating (data) signal. Hence, for deriving a maximum-
likelihood demodulator for PCM, it is more convenient to consider the
maximum-likelihood receiver to be that which determines the most likely
PCM signal rather than the most likely data signal. This is a reasonable
approach since there is a unique (though non-analytic) correspondence be-

tween a PCM signal and the data samples which it represents. That is,
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the coding and modulation operations are deterministic and reversible.
Hence, determining the most likely PCM signal is equivalent to determining
the most likely sequence of quantized data samples, and the interpolation of
the sample values need not be considered as part of the demodulation process
(see Figure 1). However, with this approach it is not at all clear how one
might make use of a priori data statistics such as autocorrelation of the

data (or correlation between data samples) in the demodulation process. It
appears that we must somehow be able to make use of the PCM signal sta-

tistics resulting from these data statistics.

For the case treated in Chapter 1, minimum-error demodulation
has been regarded as the process of deciding which of all possible signals
extending over some time interval, T, is most likely to have been trans-
mitted, given a received signal with independent, additive, band-limited
white gaussian noise. This requires signal probability distributions for
entire signals (elements of a random process ensemble). The concept of
signal space is very convenient for envisioning entire signals as the elements
of a probability distribution. But useful mathematical expressions for such
distributions cannot always be obtained. For a gaussian random process,
such expressions may be obtained as in Reference 11, but PCM signals do
not represent a gaussian random process; and although the modulating data
signals might be assumed to come from a gaussian random process, the
treatment of Reference 11 places requirements on the modulation operator
which are not satisfied by PCM as pointed out in Reference 11. But if we
consider each transmitted y-waveform extending over time interval T to
be a sequence of binary PCM words, Yyr Yy === Voo and each received

z-waveform to be a sequence of noisy binary PCM words, z,, z_, ---, Z ,

1 2 n
then the inverse probability distribution of the transmitted waveforms may

be written:

r(zl: —-—— zn , yl: -—-y Yn)g(Yl: ——= Yn)

Q(le b ] Yn zl, "":zn) = S(Zly---,zn)
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where q(yl. mmeey | 2o zn) and g(yl, -——, yn) are probability distri-

i - f ] T T T E Bl } E Rt
butions of the y-waveforms, and r(z1 2 l yl yn) and s(zl zn)
are probability density functions of the z-waveforms. The remarks made
on page 4regarding the interpretation of probability density functions for

waveforms applies to the above probability density functions.

Since the a priori joint probability distribution g(yl, - yn) of the
word waveforms Y=oy, is equivalent to the a priori joint probability
distribution f(Yl, .-, Yn) of the corresponding quantized data samples
Yl' -——, Yn (we assume f(Yl, —n-, Yn) to be known), and since
r(zl. —eei 2 ' ATRLET yn) could be obtained from the assumed distribution,
h(n), of the additive, independent, band-limited white gaussian noise, we
could evaluate g(yl. sm Yy l ITREAD zn) for each possible set of yi‘s with a
given set of zi's, and choose the set of yi's which gives the greatest value,
But this process would not necessarily yield the lowest possible word error
probability since the most probable sequence of words is not necessarily the
sequence of most probable words in each word-position. If we wish to mini-
mize word error probability we should choose the most probable word in

"each word-position {or “'frame").

Let us assume that we have stored n frames of received signal,

and let ¥y be the signal {word) transmitted in the ith frame and z, the re-
' t -

ceived signal ir the i h frame, We wish to make a maximum probability

estimate of yj, knowing z_, -~~, Zj' metaem That is we wish to choose the

1
y‘i waveform which maximizes p(yj | zl, - zn). We may aobtain
p(yj | Zyammos zn) by summing the joint probability distribution

q(yl, uhiat A | 2 =mm zn) over all y; except vy’

ply. | z.s---,2 )= E : § : E § : aly s ===y |2, ---,2

+1€U yné.U

_ Z }"\ Z I‘(Zln---,zn I yl.*--,yn)g(yl.f--,yn)
- == ) J e - ———
s(zl, ,zn)

yléU y_léij+1€U ynéU

(2.1)

n

i
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where U =the set of all possible transmitted PCM waveforms during one

d-time, T_ .
word-time W
The yi's and zi's now represent waveforms of duration TW.
If the noise is independent of the transmitted signal y then:

A T | Yooy =hlz) -y --mz -y)

If the noise is also independent from frame to frame:

r(z,---.2 |y -==»y ) =h(z; -y ) ---h(z_ -y ) (2.2)

Here h is used to represent both joint and marginal distribution for the noise

random process. Then:

PUyj| = o my) =Kgl2) 2 2

y1€ U yj-le 8) Yj+lé U yne U

h(z -y, )h(z,-y,)---

---h(z_ -y ) g(yl, ==y, ) (2. 3)

_ 1
S(le —-——— zn)

where Ks(z) = and is independent of yj.

Since g(yl, - yn) is equivalent to f(Yl, -——— Yn), equation (2. 3)
expresses p(yj I Zys == zn) in terms of known functions of the received z's
and all possible combinations of transmitted y's. Therefore, in principle
the problem of computing p(yj |'zl, -—--, zn) for any specified Zsmm 2 is
solved. -However, in practice the problem still appears quite formidable
because of the number of operations required for the computation with a
reasonable number, m, of bits per wordr and a reasonable number, n, of
received words to be considered. For example, if m =6 and n =5 the
multiple summation involves more than sixteen million terms for each
possible yj waveform, of which there are Zm; and the complete computation
must be made for each word to be demodulated. Hence it appears that the
only feasible method for making the computations is by use of a high speed

digital computer.
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The significance of equation (2. 3) lies in the fact that if the esti-
mated yj is that which maximizes (2. 3), the probability of being wrong (i. e.,
probability of error) is the lowest obtainable by any method of estimation
which makes use of only the n received words, zl, -—-, zn. If we can calcu-
late this error probability as a function of signal-to-noise power ratio for
any assumed n and data statistics we have calculated the lowest possible
error probability attainable for the assumed conditions. No explicit ex-
pression for this error probability has been obtained. Consequently calcu-
lation of the error probability must be accomplished by a model-sampling
or ''monte-carlo' technique, which in its simplest form would consist of
selecting sets of z's (noisy waveforms) from the proper distribution and
operating on them as indicated by equation (2. 3) to select the Yj which maxi-
mizes (2. 3). This must be repeated, observing the frequency with which
errors are made in selecting yj, until an estimate can bé made, with reason-
able confidence, of the average error rate or error probability. The means

for implementing this operation in a high speed digital computer must now

be considered.




Chapter 3

SIMULATION OF MINIMUM-ERROR DEMODULATION

WITH A DIGITAL COMPUTER

The expression (2. 3) has a numerical (probability) value for any

1
values we must first be able to determine numerical values for the factors

set of waveforms yj, Zyr=maZ In order to determine these numerical

of the form h(zi-yi) for any waveforms z, and v These factors are the
values of the noise probability density function, h(n), for n =z.-Y, We as-
sume the noise waveform to be a band-limited white gaussian waveform of

duration Tw, in which case it can be shown that (see Reference 14):

. 1 2
h(zi-yi) —K6 exp (- KZ j (zi-—yi) dt (3.1)
TW

where K2 is the one sided spectral height of the noise and K6 is a constant.

As in Chapter 1, the term ''band-limited white'' here means that
2
the power spectrum is of uniform height, K, from zero frequency to some
arbitrarily large but finite frequency, W, and of zero height for all higher

frequencies.

.th . . .
The integration in (3.1) is over the i word-time. This equation

can be reduced to:

2
- = , —_— ) t 3.
h(zi yi) F(Ez. EY')exp > j zlyid> (3.2)
i i K T
w
j 2
where E = z. dt
z, i
TW
2
EYi = Y; dt
TW
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For symmetrical PCM waveforms, E is the same for all y € U,
. i
i
Since the zi's are all given and are unchanged for calculating p(yj Izl, - zn)
for any yjé U, the Ez 's are also unchanged. Hence F(E ,E ) may be con-
. z, Y.
i i i
sidered a constant and, for purposes of maximizing p(yj| Zys=ma 2 ) with
n

respect to yj, equation (3. 2) may be written:

h(zi-yi) =K7(z) exp -—-2'-2— j ziyidt
K T
w

The multiple summation of equation (2. 3) is taken over all yl€ U,
Y, € U, etc. for all Y5 except yj. For m-bit words there are 2™ possible
waveforms for each Yy That is, the set U is made up of 2™ gifferent PCM
waveforms. (The results are easily extendable to redundant codes in which
there are less than 2 possible transmitted waveforms). Each of these
waveforms will be distinguished in our y-notation by a second subscript.
For example the pth waveform, from some ordered arrangement of the
waveforms, is Yi(p)' (The most obvious '"ordered arrangement' for ordi-
nary binary PCM waveforms is in the numerical order of their binary
number representation. ) Using this more explicit notation, the above e-

quation becomes:

2
- = —_— dt .
h(z, yi(p)) K_(z) exp o f 2Yi(p) ) (3. 3)
. TW
Furthermore, the value of the first bit of Yi(p) will be represented by

» the second bit by yi(p)Z’ etc. Then the exponential in equation (3. 3)

m
2 Z 2
—_— dt = —_— 3.4
B f %Y i(p) ™ £ <2 f ziryi(p)rdt> (3.4)

Tw s

Yi(p)
is:

th th
where the integration of the r term of the summation is taken over the r

bit-time (of duration TB). We assume here that the bandwidth, W, of the
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band-limited white noise is large compared to 1/TB.
Let the binary character of the transmitted PCM signals be
represented during each bit-time by either of two known waveformsl, :
gl(t) and gz(t) (e. g., gl(t) representing ''yes'' bits and gZ(t) representing
""no'" bits). We must require gl(t) and gz(t) to have equal energies since we
have already made that assumption implicitly by assuming that Ey is the

same for all yi€ u.

That is, we must require that

2
2 2 2
j gl(t) dt = j gz(t) dt =Eg =8 TB = —SB— (3.5)

TB TB

2
where S =average transmitted signal power. (We will later extend our
results to include any two waveforms fl(t) and f?.(t) without the equal energy

requirement - see Chapter 5.)

The finite-time correlation coefficient for gl(t) and gz(t) is:

A= —gl—‘f g, (tg, (1) dt (3.6)
s

It can have any value from -1 to +1.

. . th .. .. .
Let,nr(t) be the noise waveform during the r bit time. That is,
nr(t) is the noisz waveform which is added to the transmitted signal, yi( )r
. th . .. . s
to give tie received signal z,. during the r = bit time. Now consider the

integral

Nr = —-;—2— j nr(t)yi(p)r(t) dt
TB

. . ¢
where yi(p)r(t) is either gl(t) or gZ( )

1 In the treatment following it is assumed that the pair of waveforms,
g (t) and g_(t), is known for each bit-time independently of the wave-
form existing during any other bit-time. This assumption does not
include PCM/FM with non-integer deviation ratio (see first para-
graph of Appendix I).
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Since nr(t) is a sample waveform from a band-limited white
stationary random gaussian process of zero mean and two-sided spectral
2 . . .
height K /2, Nr is a random gaussian variable of zero mean and mean

square value

2

4
N £ = — f j g(t,)elt,In (¢ )n (t,) dt dt,
Ty Ty

4
R R (t -t
o f J‘ glt))g(t,)R (t,-t,) dt dt,
T 7T
B B

-where Rn(t1 - tZ

—— 2
EENCARNNE (K /z) d (t-t,)
(x is used here to indicate the ensemble average, or expected value, of x.)
Therefore:

?.SZ

2 2
S R
K™ 7, K g KB
: B
For a specific nr(t) waveisrm, erw111 have one value, er. for yi(p)r(t) = gl(t)
and (in genera_l) another value, er, for yi(p)r(t) = gz(t). er and er are
random gaussian variables of zero mean, variance Nr » and correlation

coefficien* PN where:

N 2 k¥ N2
Tr ol

NN 4
Py = - f j g, (5 gt dnlt Jnlt,) dtdt,
Ts Tg

4 . ‘
L3 f f gl('il)g_,_(tZ)Rn(tl-tz)dtldtZ
K Nr

TB TB
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.2 _
L 5= f g, (thg, (1) dt = N
K Nr
TB

Returning now to equation (3. 4), if yi(s) is the transmitted waveform during

th . t
the i word-time the r h term of the summation of (3.4) is

2 o2 { -
—I{—Z— f ziryi(p)rdt = P— j [ y]‘(s)r(t) + nr(t)] yi(p)r(t) dt
' TB TB

2

2S .
+N £ i i.e., y =y,
KZ - - for matched bits (i. e Yi(s)r yl(p)r)
- | (3.7)
?..S2
7\ ) -+ N for unmatched dyits
k%R r .
~ where: Nr =Nr1 if Yi(p)r =g1(t) (e. g., -adlyes' bit)

Nr =Nr2 if yi(p)r =g2(t) (e.g., a '""no'" bit)

Now the actual minimum-error demeodulator, having available
only the reccived noisy waveforms, z, would . determine the h(zi-yi(p))
values by correlating the received zi's with.each ppsgible transmitted
waveform, yi(p)' and then exponentiating the .results.as indicated in (3, 3).
But for purposes of simulating the opexation in a digital computer (e. g.,
for a monte carlo method) where - we.must manipulate digital quantities
rather than waveforms, the tranamitted signals (y's) must be generated by
the computer and therefore it has(the .information needed to determine for
any assumed waveform, vy the bits.which ""match'' the actual transmitted
waveform, Yi(s_)' .and:.those which are "unmatched.'! Therefore the computer
can calculate p.thelh(-zfi-yﬁ_m,) values of equation. (3. 3) by use of (3.4) and (3. 7).

Hence the onlyuse that the computer need make of the noise portion of the
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received signal waveform is to determine N __ and N Since N = and
r r

rl 2° 1

NrZ are simply two correlated random gaussian variates with variance

. . 2
and correlation coefficient determined by S and ?\ » we can, for
KZB

computer simulation purposes, select Nr and er directly from the proper

1
2-dimensional gaussian distribution and use them in (3. 7).
Note that the only characteristics of the waveforms gl(t) and
. . 2
gz(t) used in this operatiorn are the mean square value, S , (assumed the
same for both waveforms) and the finite-time correlation coefficient, 7\ .
Hence results obtained for any pair of waveforms apply directly to any other

pair (with equal energies) having the same 7\ .

The basic general computer procedure then for generating sets of
z's and evaluating the factors of the form h(zi-yi(p)) for a sample calcu-
lation is to first select n data samples having the appropriate correlation
between samples, code these samples in m-bit binary code and store these.

For each code bit, select two random numbers, N . and Nr , from a two-

rl 2
dimensional gaussian distribution with variance ZSZ and correlation co-
| p

KB

efficient 7\ (determined from the assumed gl(t) and gz(t)). Evaluate each
h(zi-yi(p)) by use of (3.7), (3.4), and (3. 3).

The required calculation procedure is made clearer if we discuss
it in terms of specific waveforms for gl(t) and gz(t). The simplest possible
waveforms of equal energy are gl(t) =+S and gz(t) =~ S illustrated in
Figure 3. For these waveforms 7\ =-1, and therefpre er =- er. This
facilitates the generation of bit-noise in the computer and therefore the
computer calculations were carried out for these particular waveforms. As
mentioned above, the results apply directly to any equal-energy waveforms
having the same?\ . We will see later that the results can easily be ap-

plied to any waveforms whatever. The procedure discussed in the following

paragraphs for these specific simple waveforms is slightly different from the
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Figure 3 Typical Waveforms
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general procedure outlined in the above paragraph since it is not necessary
to use equation (3. 7) in this simple case. Equation {3.4) can be used as

follows.

Consgider the waveforms shown in Figure 3.
yi('p) is the (solid-line) symmetrical PCM waveform

z, is the (solid-line) noisy waveform

The dotted lines -represent the average values of z, over individual

sy g . th . . . . -
bit-times and this average value over the r  bit time is designated by Z, -

Equation (3.4) may now be written:

.—2—.. f z.y dt = _Z_ZE
KZ i’i(p) KZ

r=1
TW

m

yi(p)r Zir (3.8)

Note that yi(p)r can be either +S or - S, but can have no other
values. Therefore, since z, is some ¥ to which band-limited white gaussian
2
noise of one-sided spectral height K has been added:

;ir =% S + the average over one bit-time, T_, of some band-limited

B

white gaussian noise of zero mean and of spectral height KZ

=% S + N,
1r

where'Nir is a sample of a random gaussian variable of zero mean, and

variance 2
K

ZTB

We now define f ir as a normalized zir:

'Zir % 5 N, £ S
fees = "kt x_ " & Ve G9
vZTB JZTB vZTB dZTB
where . Nir is a sample of a random gaussian variable of zero
| ir = K mean and unity variance. These samples may be as-

‘ZTB sumed independent from one bit-time to another since

the bandwidth, W, of the white noise is assumed large compared to I/TB:
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If we define normalized PCM waveforms:

Then:
+ S

y.
Aql(p)r = __I(L = (3. ]_O)

K K

JZTB JZTBl

Equation (3. 8) becomes:

m
“g‘z—f 2 Yi(p) Tt = 2 Vitpyr § i (3. 11)
T

K
W r=1

Equation (3. 3) then becomes:

ﬁl
h(zi—yi(p)}hK7(z) exp (Z 77i(p)r f ir (3.12)
r=1

All of the factors of equation (2. 3) are of this form except for the
factor g(yl, -—-, yn) which is the joint probability distribution of the PCM
waveforms Yy =m Y, But each waveform, ¥ is a (binary) representation
of a particular quantized data value or sample, Yi’ and each set of waveforms,
Ypr===a ¥ represents a corresponding set of quantized data samples
Yl’ -— Yn. Therefore, the probability of occurrence of a particular set of
waveforms is the same as the probability of occurrence of the corresponding
set of quantized data samples. Hence the joint probability distribution,

g(yl, ---, yn), of the waveforms can be replaced by the joint probability

distribution, f(Yl, - Yn), of the corresponding quantized data samples.

For any given set of z's, equation (2. 3) may be evaluated for each
. waveform, v.,.\»V.,,.» --- etc. or, in general, for y,, ,. Using equation
¢ iy Vi) 8 Yitp) & 4
(3. 12) and replacing g(yl, ---,yn) by f(Yl, ---,Y ) we may express the right
n
hand side of equation (2. 3) in terms of numbers rather than waveforms so

that a purely numerical evaluation is possible:
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m

P(yj(P)l zl’ T zn) =K8(Z) 7725:\’ = ; virfir+-"+77nr)¢nr>f(Yl’ T Yn)
i

i=1,---n

L\ 3.13
i %] ( )
where V is the set of all possible normalized PCM word waveforms.

It may be noted again that the first subscript, 1, 2, ---, j, etc.
refers to the word-time-slot; the subscript in parenthesis, (p), (q), ---,

refers to the particular m-bit PCM waveform; and the other subscript, r,

refers to the bit-time-slot.

Since evaluation of (3. 13) involves well defined manipulations of

numbers, we may simulate the operation with a digital computer.



Chapter 4

PROCEDURES FOR

COMPUTATION OF ERROR PROBABILITIES

The computer simulation of minimum-error demodulation will
produce the same average error rate, or average error probability, as
would an actual minimum-error demodulator provided the sets of z's used
by the computer are representative of those which the actual device would
operate upon. We can satisfy this requirement by selecting the z's from
the proper z distribution, a process sometimes called '"model sampling. "
Since each z is formed by the addition of a PCM waveform, y, and a noise
waveform, n, we may insure that the z's are from the proper distribution
by selecting the y's and n's from the proper distributions. The proba-
bility distribution g(yl, ---, yn) of a set of y's is, as previously discussed,
uniquely determined by the equivalent distribution f(Yl, ---, Yn) of the
quantized data samples. The probability density function of the noise
waveforms is h(n), but in Chapter 3 we found that we do not need to make
use of the complete noise waveforms in our calculations. We make use only
of Nir's, the average values of the noise over one bit-time, TB. We found

in Chapter 3 that these average values are simply random numbers selected

e . 2
from a gaussian distribution of variance _ K . Hence we may, for
- 2T
B

purposes of these calculations, generate sets of z's from the proper distri-
bution by selecting a set of Y's from the proper joint distribution, code
these in binary PCM code of amplitude = S » and add to the ampli-
K {B/2"

tude of each bit of the codes constant, independent values (i. e., the V's
of equation (3.9) ) selected from a gaussian distribution of zero mean and
unity variance. The resulting numbers are the j 's required in equation
(3.13). We shall henceforth refer to the ratio S simply as the
"'signal-to-noise ratio,'' S/N. K ﬁé_/_?:'
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We assume the data to be from a gaussian random process with
specified power spectrum (or autocorrelation function), mean m and
variance (7 2. If the data quantization intervals are such that t}:’e proba-
bility densit); function of the data amplitude does not change appreciably
over the quantization intervals, then for calculation of the joint probabilities
of data samples we may use the data value at the center of a quantization
interval for any data sample falling in that interva.l (see Figure 4). But an
m-bit binary code can represent only 2™ distinct levels or quantization
intervals. Hence only a finite range of data amplitude can be i'epresented

by such a code. In Figure 4 (shown for m =6) this finite range has been

chosen to be 5, 2 O—y (or m 2.6 fy). The probability of the data oc-

curring outside this amplitude range is less than 1%. When data samples
outside this range do occur they are coded as ''zero'' (if below this range)
or ''full scale' (if above this range). The joint probability distribution,

{(Y,,~---, Yn) of quantized data samples Y _,---, Yn is then essentially an

1’ 1
n order gaussian distribution with correlation coefficients Ph' equal to
1

the values of the normalized autocorrelation function of the data, IO(Thi),

where Thi is the time between samples Yh and Yi:

n n
: : >, 2 |
WYy mmm ¥p) =Ky exp 20 ° [ﬁl ChT1oic1 lpl'hi(yh-my)(yi-my)
y
ke A 3 im_xx.
10 leol =1 i hi h i

Y-m
where X = -

o

y

IID' =determinant of correlation matrix, [[) ]

l',olhi = cofactor of element /Ohi of If) l .
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DATA AMPLITUDE
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Figure 4 Assumed Data Amplitude Probability Density
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The generation of independent gaussian numbers is not difficult.
One way in which such numbers may be generated in a digital computer is
by first generating groups of random numbers (say M numbers in each group)
uniformly distributed between zero and unity, and then adding the numbers in
each group., If M is fairly large (say 10 or more) these sums are, for
practical purposes, random independent gaussian variates of mean M/Z and

variance M . But we want Y's which are dependent (or correlated)
12

gaussian variates with correlation matrix [P ] . We may, however,
generate n independent variates and then transform them into n correlated

variates with correlation matrix [F] as follows:

Let Uy, ---,u be uncorrelated gaussian variates, with zero

mean and unity variance which we wish to transform into correlated gaussian

variates Y1 R Yz,

fied correlation matrix:

-—— Yn with zero mean and unity variance and with the speci-

TR A
Pl Pz "

. L N )
If we find the eigen values, /\1. /\2, =, A o’ and the eigen vectors,

e e -~-, € , of the matrix, [P] , the desired transformation is: (see
n

| R
Appenaix IV):

[ - 7] B[] @
where [P] is the (orthogonal) matrix whose column elements are the eigen

vector components, and
B 7

A,

] -

o--o
o_-

|

[

|

I

[}

>

B l©mo o
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[U] is column matrix with elements u_, uz, --=,u

1 n

[Y] is column matrix with elements Y _,Y_,---,Y
1 "2 n

We now have all the formulations and assumptions necessary to
make error probability calculations with a digital computer using the model-
sampling (or monte-carlo) technique. But the computing time required in-
creases very rapidly as m and n get large. We can learn a great deal,
however, about the gains available by use of data correlation from consider-
ation of the gain for n =2 -- that is, we examine 2 received (correlated)
words in estimating the transmitted waveform for one of them. The cases
investigated for this report are m =6 and 3, n=1and 2. Form =6andn =2
the time required by an IBM 7090 for each simulated demodulation is ap-
proximately 0. 007 minute. For this case the data correlation transfor-

mation, (4.1), becomes (see Appendix IV):

L+ P, 1- £y,

- .2

Y1 > u1 + > u2 (4 | a)

Y. = s I A L Me Prz u (4..2b)
2 - 2 b 2 2 .

and equation (3. 13 ) becomes:
6 63 6
P(Yz(p) ‘zl, zZ) =Ka(z) exp < ;1 72(p)rf2r qZO exP<IZ:1 171((1)1_}(11_

2 2
X -2 X X + X
o [ 1@ " 2Pz % uq) ¥ap) **ap) ) 3

2(1 - plzz)

A simple model-sampling estimation of error probability would

be to note, for each simulated demodulation, whether or not an error was
made and take the ratio of total errors to total demodulations as an esti-

mate of the word-error probability, PW. For this simple technique we
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can calculate, for any desired confidence level, the number of total de-
modulations required (and hence the computation time) as follows. Con-
sider a random variable, U, which has a value of unity when a demodulation
results in an error, and a value of zero when no error is made. The mean
(expected) value of U is then the word-error probability, PW, which we wish

to estimate. For L demodulations the random variable i

.
Pr=—1 . Y
i=1

is our estimate of PW. But P1 has a binomial distribution of mean PW and

standard deviation O;: = VPW(I-PW)/ L. The 95% confidence interval is

1

(for reasonably large N) approximately + 2 G—P . So if we require 95% con-
1

fidence that P_ is within 5% of P__ we must have 2 (. /P. =0.05, There-
1 w Pl w

fore for PW =0. 1 (for example) we get L. = 14,400 requiring (14,400)0. 007) =

100 minutes of computing time on the 7090 for each combination of data
correlation coefficient and signal-to-noise ratio. For PW =0. 3 we find that
L =3,700. We need to reduce these by a factor of twenty or thirty for a
reasonable total computation time on the 7090 (say afound one hour). To
accomplish this we must modify our technique so that our estimate of PW
requires fewer simulated demodulations (i.e., fewer '"samples'') in order

to converge to PW with reasonable confidence.

One such modification of our technique would be to find a better

statistic for estimating P__ than the estimate, Pl, used above. Such a

W
statistic must have an expected value (or mean) equal to PW and, in order
to be '"better' for our purposes, its variance about this mean must be ac-
ceptably low with fewer samples (simulated demodulations) than required for

Pl. Such an estimate can be obtained as follows.
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To accomplish each simulated demodulation we calculate, from
equation (3. 13), the value of p(yz(p) | z zz) for each of the 2™ possible
Y, waveforms and choose the Y, corresponding to the largest value of
p(yz(p) Izl, ZZ)' Let this largest value be Py Then P M is the probability
that we have chosen, for the particular set of z's used in that simulated de-
modulation, the correct Y, Then Q = l-pM is the probability, for that set of
z's, that we will choose the wrong Y, =" that is, that we will make an error.
Therefore if we choose our sets of z's from the proper distribution (which
we shall do), Q is an unbiased estimate of PW, and hence so is
L
P, = — Z Q. where L is the number of samples, or simulated de-
i=1 !
modulations, used in the estimate. Since the terms in the summation of P

must be either zero or unity while the terms in the summation of P_ may

2
have any values from zero to unity, we might expect that P2 is a better esti-
mator of PW than is Pl' This turns out to be true. For PW =0. 3, P2

gives a good estimate of PW with L. =300. But for PW of 0.1 or less (cor-
responding to signal-to-noise ratio of about 2 or greater), the number of
samples required is undesirably high and we must seek further means of

modifying our model sampling technique so that fewer samples are required.

A method, applicable to our problem, for modifying the model
sampling (or monte carlo) technique so that fewer samples may be required
has been suggested by Kahn and Marshall (see Reference 5). The philosophy
of this method (which is called '"importance sampling'') is as follows. Con-
sider the random variable Q = l-pM defined above. The randomness of Q
derives from two sources: the randomness of the transmitted data values,

Y, and the randomness of the noise, N. The amplitude of the noise is as-
sumed gaussianly distributed as discussed earlier. Now consider P__ as

w
the expected value of Q:

P, = ff Q(Y, N)p(Y, N)dYdN (4.4)

where p(Y, N) is the joint probability distribution of Y and N.
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Our estimate, PZ' of PW is
L
-2
P.2 = i - QA Yi' Ni) (4. 5)

where the Q's are calculated using Yi's and Ni's selected from the distri-

bution p(Y, N).

If the integrand of (4. 4) is multiplied and divided by some arbitrary
probability distribution, p* (Y, N), it becomes:

jj(Q(Y NP, N) p‘:{YNIL) > p* (Y, N) dYdN (4. 6)

So if we now select Yi's and Ni‘s from the '"'modified' distribution, p>"< (Y, N),

(rather than from p(Y, N)), an unbiased estimate of Pw is

L

S p(Y N,) (4.7)
P, = ——— Y., N;) ———— *
3 L 1Z=:1 < Yo (YN

That is, we calculate the ('s as before but now we ""weight'' them by

" p(Y,,N.)
" r 2 before summing them. As pointed out by Kahn and Marshall,
P (Yi’ Ni)
p* (Y, N) can be selected such that the variance of P_ is less than the variance

3

of P2 and consequently the sample size, L, can be smaller for P3 than for

PZ' In fact, p*(Y. N) can theoretically be selected such that the variance of

P3 is zero thus permitting us to take L =1. This can be seen by noting that

if p*(Y, N) is selected such that

Q(Y, N) p(Y, N)

Pw

p(Y, N) =

equation (4. 7) would become
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L

1 Z
= = f
P3 I Pw PW or any L.

i=1
Of course we cannot determine this optimum p*(Y, N) since it's
determination requires us to know the very thing we are trying to estimate.
But knowing that such a p*(Y, N) exists encourages us to attempt to find, by
intuition or good luck, a p* (Y, N) close enough to the optimum so that the
variance of P3 is less than that of P, and hence requires fewer samples for

2

satisfactory convergence to P We may accomplish this in this case as

e
follows.

Since Y and N are independent we may write p (Y, N) as r(Y) h(N).
We may reason intuitively that since changes in the variance of our esti-
mate PZ result primarily from changes in the rms value of the noise, that
the variance is largely due to the randomness resulting from N rather than
Y. Therefore the difference between the original distribution, p (Y, N),
and the optimum '"modified" distribution, p’:< (Y, N), should be largely due to
modification of h(N) rather than r(Y). Hence we restrict our p*(Y, N) to be

of the form p* (Y,N) =x(Y) h*(N). With this restriction, equations (4. 6) and

(4.7) become:
f f BNy p* (Y, N) dYdN (4. 8)
h* (N)

h(N,)
P, Z Q(Y.,N.) -——1—) (4.9)

T i i h*(Ni)

and the optimum (zero variance) h’ﬁN) is:

Q(Y, N) h(N)

P
w

h*(N) =

(4. 10)
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As pointed out in Chapter 3, the noise selected (by the computer)
for each bit of the received signal is simply a number, Nr, selected from
a gaussian distribution, g(Nr). We may consider any noise, N, to be a set
of independent bit-noises, Nr, and hence the probability density h(N) of any
N is the product of the probability densities g(Nr) for the corresponding set
of Nr's. Therefore, we may modify h(N) by modifying g(Nr) to obtain g"‘iNr).
According to equation (4. 10) we should modify h(N) by multiplying it by
Q(Y, N). Ignoring the variation of Q with Y we may reason that the variation
of Q with the bit-noise, Nr, is such that Q is largest when the amplitude of
Nr is equal to the peak signal amplitude, S, (since then the signal plus
noise may be halfway between +S and - S in which case we have the greatest
uncertainty as to which signal, +S or - S, was transmitted) and decreases
for larger or smaller Nr, the decrease being more rapid for higher signal-
to-noise ratios. Hence to obtain g*(Nr) we should multiply the g(Nr) of
Figure 5(a) by a function shaped something like that of 5(b), with the result
shown in 5(d). The result must, of course, be normalized so that it is in-
deed a probability density function. Somewhat the same result can be ob-
tained by adding to h(Nr) of 5{(a) a function such as that of 5(c). This latter
is very easy to accomplish in the computer by simply selecting some of the
Nr's from a flat distribution f(Nr) such as 5(c) and some of them from g(Nr)
of 5(a). Which of these distributions is used for a particular selection is
determined by playing an auxiliary game of chance, and the percentages of
time that each should be used, as well as the half-range, B, of 5(c), are
determined (for minimum variance of the estimate P3) by experimentation.

This technique of reducing the variance of our estimate, P_, worked very

3

well for Pw of around 0. 1 (signal-to-noise ratio of 2). For this case, B of

Fig. 5(c) was 2.5 and the flat distribution f(Nr) of Fig. 5(c) was used
(randomly) for selecting 20% of the bit noise values. With these values, P3

gives a good estimate of PW with L, =300. For Pw's less than 0.1 (signal-

to-noise ratios of 3 or greater) this simple technique did not reduce the
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variance sufficiently to make the monte carlo calculations practical. Other
techniques for modifying the noise distribution could surely be found to make
calculations for higher signal-to-noise ratios practical. But this was not
pursued further because the trend of the results is apparent without these

further calculations.

The ''weighting factors, ! h(Ni)/h*(Ni) of equation (4. 9) are calcu-
lated as follows (for n =2, m =6). Let A be the fraction of the bit-noises,
Nr’ selected (on the average) from the flat distribution f(Nr) of Figure 5(c),
and 1-A the fraction selected from the gaussian distribution g(Nr) of Figure

5(a). Then

g*(Nr) =(1-A)g(Nr) + Af(Nr) and
*
g (N_) f(N )
— =(1-A)+A z
g(Nr) g(Nr)

2
/2
T e | =

e el ) | >

12

*
h* (N) _ , l g (Nrk)
h (N) g (Nrk)

k=1

and:

The index of the multiple product goes to 12 because we are considering the

case of two 6-bit words (i.e., n =2, m =6).

The IBM 7090 computer programs used for the computation of error

probabilities are presented and discussed in Appendix V.




Chapter 5

INTERPRETATION OF RESULTS

Computed results are presented in Appendix VI. As discussed in
Chapter 3, these are the minimum attainable word-error probabilities for
n =2 when any two waveforms, gl(t) and g,Z(t)’ with equal energies (see
equation (3. 5)) and with finite-time correlation coefficient, 7\ , of -1 (see
equation (3. 6)) are used to represent the binary character of the PCM codes.
These results can easily be used to determine the minimum attainable word-
error probabilities when any two waveforms, fl(t) and fz(t), are used to
represent this binary character of the codes. It is neither necessary for
fl(t) and fz(t) to have the same energies nor for their finite-time corre-
lation coefficient, )\ » to be ~-1. In fact, their correlation coefficient, 7\ s

need not even be determinate.

Consider two arbitrary waveforms, fl(t) and fz(t) of duration TB,
used for representing the binary character of the PCM waveforms. There
is associated with any such pair of waveforms a ''correlation'' parameter,

O, defined as follows:

2 T fl(t) fz(t) dt

“ 2 2
f l:fl(t) +f2(t) ]dt

This parameter is identical to 7\ when the two waveforms have equal

X (5.1)

energies., If we subtract from both fl(t) and fz(t) the waveform s(t) =
1/2 [fl(t) + fz(t)] we obtain new functions, gl(t) and gz(t), which have equal
energies and a 7\(or0<) of -1,

g (1) = 5 [£,(0) - (0]
gt = - — [£,(0 - £,(0)]
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This is a linear reversible operation which could be performed on the re-
ceived noisy waveforms to convert the signal portions of the received wave-
forms from fi(t) to gi(t), but without altering the (added) noise portion of the
waveforms. Then we could operate on these converted (noisy) waveforms
with the minimum-error demodulator and obtain the error probabilities

of Appendix VI. Since the conversion operation is reversible, these error
probabilities represent the minimum attainable error probabilities for the
original, received waveforms vs. the signal-to-noise ratio of the converted
waveforms. But since the conversion does not alter the noise, the cha.nge in
signal-to-noise ratio due to the conversion operation is just the square root
of the ratio of the average power in the signal portions of the original and
converted waveforms. We assume that ''yes!' bits and '"'no' bits (i.e., fl(t)
and fz(t)) occur with equal frequency since this assumption is implicit in the
results of Appendix VI as a consequence of assuming the data distribution of

Figure 4. Then theva.vera.ge power of the original signal is

2 1 2 2 ' P
Sf = T<f1(t) +fz(t) > where <X> indicates the

average over one bit time, TB' of X,

The average power of the converted signal is

2 1 2 2 1 2
5p =7 <g 0+ 0" > = <[[w - ] >

g

1 2 2 1 (.2 2
~z <f1 (t) - Zfl(t) fz(t)+f2 (t)> = T(Sf - ()(Sf )

and hence:

. . : 1/2
original signal-to-noise ratio _ 2 /
converted signal-to-noise ratio 1 -X

Therefore the results of Appendix VI may be applied to any binary PCM

waveforms whatever by simply multiplying the S/N values by 2
1 -X
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The computed results for n =2, m =6 are presented graphically

in Figure 6. This figure shows the minimum-attainable word-error proba-
bility, vs. signal-to-noise ratio (normalized by 11—7) when two noisy re-
ceived (6-bit) binary PCM code words are used in the demodulation of one of
them if the correlation coefficient between the data samples represented by
the code words is p and the data has the gaussian amplitude distribution

of Figure 4. Results are shown for /J =0, 0.5, 0.7, 0.9, 0,95, and 0. 98.
Results are also shown for completely random bits - i.e., no interbit de-
pendence. (Note that for gaussian data there is interbit dependence due to

the data amplitude distribution, even for p =0.)

The results for n =2, m =3, presented graphically in Figure 7,
indicate greater available gains from high data correlation for three-bit
words than those indicated in Figure 6 for six-bit words. This is not sur-
prising when we consider, for these two cases, the relative probabilities of
two correlated data samples falling in the same quantization interval. Con-
sider the conditional probability density function, p(Y2 |Y1), of the second
sample, Y

» when the value of the first sample, Y, , is given. If Y and Y

2 1 1 2
are gaussian variates with ero mean, variance ] 2, and correlation

coefficient P, then:

2
1 (Yz'Pyl) >

pY,|¥ )= ———— exp |- (5. 2)
211 2
{er 0 1 2 J-l
2 2 2
where Jl = d(1- /D )
For the assumed distribution of Figure 4 we have
2™
g = 53 I where I is the width of a quantization

interval.
Hence the mean of the gaussian conditional distribution of YZ, given Yl, is

PYI’ and the variance is:
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1}
)

2
for m =3: 0_1—1.54 VI—/O 1=0.671 for /,)

=0.311 forp .98

for m =6; 0_1-*-12..3 1-/02 I=5.4Ifor10=.9

=z.51forp=.98

Therefore the probability of Y2 and Y1 falling in the same quantization
interval is considerably greater for three-bit quantization than for 6-bit
quantization. Or, in general, following the same reasoning, the relative
dependence between quantized samples is less for finer quantization (i.e.,
higher m). Consequently the gains available by use of such dependence
would be expected to decrease for increased m as is indicated by comparing

Figures 6 and 7.

Curve 1 of Figure 6 is for completely random PCM waveforms.
Curve 2 is for data with the gaussian amplitude distribution of Figure 4,
but with no correlation between data samples. For this case, the inverse

probability p(yz(p) | z) z,) becomes:

2
P(Yz(p)l z zz) =Kb(z) exp _;Z_ f zz(t)yz(p)(t) dt) f (YZ(p)) (5. 3)

Tw

where Kb(z) is constant with respect to Y,

This expression is identical to that obtained for p(y(p) I z) for
n =1. Therefore curve 2 also represents the word-error probability for

n =1, m =6. The factor f(Y ) represents the relative a priori proba-

bilities of the quantized datazx(/ziues, Y, and is not dependent upon signal
power or noise power. Therefore by the same reasoning as that used in
Chapter 2 (page 16) we may conclude that by using two data samples with
unity correlation coefficient (i.e., P =1.0) a power gain of 3 db is made

possible relative to that required for one word (or for ,O =0). The result-

ing curve is curve 8 of Figure 6.
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The results of Figure 6 for correlation coefficient of 0.5, 0.7,
0.9, 0.95, and 0.98 do not indicate as much power gain due to use of such
high data correlation as might have been anticipated. This appears parti-
cularly true for word-error probabilities less than 0. 1. For /O =0.98 the
power gain is a little more than 1 db for PW of 0.4; it is approximately 1 db
for PW of 0.2; it is less than 1 db for PW of 0.1, and appears to continue

to decrease as PW decreases.

But in determining the power gains available by use of data sta-
tistics we have assumed that the word-error probability is the ''per-
formance parameter' which is specified (i.e., fixed). If some other per-
formance parameter such as rms error is fixed, the available gains may
be different from those determined with fixed word-error probability. Of
course, as discussed in the Introduction, the (demodulation) operation
should be optimized for the performance parameter of interest. But it is
not unlikely that an operation optimized for one performance parameter may
give considerably improved performance for some other performance para-
meter. More specifically, the optimum demodulation operation which we
have optimized for word-error probability may give considerably improved
rms error performance. Some qualitative indication of this may be ob-
tained as follows from the computed word-error probabilities for n =2,

m =3 (presented graphically in Figure 7).

The results of Figure 7 for three-bit words may be interpreted as
the minimum probabilities of error in the three most significant bits (i. e.,
the '"upper half") of the six-bit words when use is made of only the '"upper
half'' of the received words in the demodulation. But these error proba-
bilities cannot be lower than the minimum probabilities of error in the
three most significant bits when use is made of the entire received words.
Hence the minimum probabilities of error in the three most significant
bits of six-bit words is equal to or less than the error probabilities ob-

tained from Figure 7.
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Therefore, for ’B V—l_“-&‘ =2 for example, from Figure 6 we see
that a correlation coefficient of 0. 98 reduces the probability of error in a
six bit word from 0. 13 to 0. 078 - that is, by a factor of almost 2. But
from Figure 7 we see that the same correlation coefficient reduces the
probability of error in the three most significant bits by a factor of 4 or
more. Since errors in the most significant bits result in larger error
amplitudes than do errors in the least significant bits, the above indicates
that the gains afforded by use of a priori data statistics may be greater for
a specified error amplitude parameter (such as rms error) than for speci-

fied error probability.

The above consideration also suggests a method for obtaining

‘approximate results for m =m, from computed results for m =m_ where

m1 < mz. From equation (5. g) and the discussion following it wi see that
the correlation coefficient, /O , can be as high as 0.9 without inducing much
dependence between the lowest order bits of the 6-bit codes representing the
two words. This suggests that for P_<_, 0.9, errors probably occur in the
low order bits with about the same frequency as with no interbit dependence.
If we assume this to hold for the three lowest order bits and use the com-

puted error probabilities for three-bit words (Figure 7) for the three highest
1

order bits we obtain:

3
= 1-(1-P.)” (1 (5.4)

-P
PW ID 6 w /D 3)
where P =minimum word-error probability for two 6-bit words (n =2,

Wp6
PW’O3

PE = minimum bit-error probability with no interbit dependence.

Or, more generally, for estimating the minimum word-error probabilities

m = 6) with correlation coefficient, /O .

s

= minimum word-error probability for two 3-bit words (n =2,

m = 3) with correlation coefficient, p .

Pw for two { -bit words from computed resuits tor two m-bit words-

=1 - (1-pE)I‘m (1-P ) (5. 5)

PW,O] W/a m
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The relation (5.4) matches very well with the computed results for 3-bit

and 6-bit words. Equation (5.5) should give even better results for pre-
dicting word error probabilities for 1> 6 and m =6 since the interbit de-
pendence of bits of orders lower than those of the six most significant bits
of each word is almost completely unaffected by data correlation coefficients

of 0.98 or less.

The reasoning employed to conclude that a2 3 db power gain is made
possible by using two words (i.e., n =2) when /O =1, 0 can be employed to
conclude that an additional 3 db gain is made possible each time n is doubled.

The resultant total gain, G_, for n words with /0 =1.0 is:

n-1
G_ :Go[l + Z (Gi-l)]

i=1
where Go is the gain available from use of the a priori amplitude distribution
of the data values. (That is, the power gain between curves 1 and 2
of Figure §.)
Gi is the power gain, relative to the power required for n =1 (or
equivalently for/O =0), for each of the n-1 additional words if used

one-at-a-time. Thatis, G, =2 for /0 =1.
i

This expression also applies, of course, for p =0 in which case
Gi =1. Whether or not it applies for 0 < ,0<1 (i.e., 1 <Gi <<2) is not
known. If it were applicable it could be used in conjunction with the results
of Figure 6 to estimate the total gain available by making use in the de-
modulation process of an arbitrarily large number of received words with
any specified data correlation. For example if the data samples have the
correlation coefficients determined in Chapter 2 for 3rd order Butterworth
data and the word error probability is specified to be 0.1, we would find that
the available gain for very large n is about 1 db. This assumes that, as

indicated in Figure 6, C‘ri approaches unity rapidly as p decreases.
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Since monte-carlo computations involve model sampling and -
statistical estimation of results, rather than rigorous calculation of
results, an associated difficulty is that of establishing confidence in the
monte-carlo results. A direct calculation of confidence intervals such as

that performed in Chapter 4 for the simple estimate, P , is usually not

1

possible because the probability distribution of an estimate is generally not

known. It would be possible to use the computed values of Q (see Appendix

VI, Tables 7, 8, 9) to establish confidence to some extent as follows:Lfirst,

estimate the variance, (7 2, of the Q's by the estimate 2 1 2
Q § = ——— (Q.-P,) .

L-1 ¢ i 2
i=1
5 3 and Q by Q h/bh™ when P3 is used as the estimate of Pw).
The confidence of this estimate ~an be established by assuming sZ to have a

(Replace P, by P

""chi-square' distribution of L-1 degrees of freedom (see Reference 2,

Chapters 6 and 8), but the estimate should be very close to (7. 2 for the

Q
large L's used here. Then the variance 0_1;2 of the estimate P2 (or P3) is
2 2
g?.% = _°
P L B L

Then, by assuming a probability distribution for PZ (or P3) we can establish
confidence intervals as was done for P1 in Chapter 4. But for the results ob-
tained in this report, it is believed that confidence can best be established
simply by notirg the consistency of the results as presented in Figure 6 (or
Figure 7). That is, siuce the results are known to be unbiased, the con-
sistent spacing and consistent trends of the curves connecting the computed

points serves to establish a more meaningful confidence in the results than

would a formal treatment such as the one outlined above.

For specified wbrd-error probability less than about 0.1, the
computed results indicate that for significant gains to accrue from the use
of data redundancy, the correlation coefficients between data samples must
be large (i.e., 0.98 or greater) for large numbers of samples. This ap-

parently becomes truer as the specified word-error probability becomes
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lower. Whether or not sufficient redundancy is present in transmitted data
must be determined by examining typical data and error requirements.
There are surely cases where data sample rates are high enough so that
sufficient redundancy is present even though such high sampling rates may
not be necessary for the data recovery accuracies required. In such cases
the existence of the high redundancy in the data may not even be recognized.
But data redundancy which is not known a priori at the receiver cannot be

used to improve the demodulation operation.




Chapter 6

ALTERNATE TECHNIQUES AND POSSIBLE

FURTHER INVESTIGATIONS

The results obtained here and discussed in Chapter 5 indicate
only in a general way the values of data correlation and specified error
probabilities for which the use of a priori data statistics and minimum-
error demodulation may be of significant value. Investigation of data sta-
tistics for classes of sampled data measurements of general, or specific,
interest may reveal very high correlation coefficients (greater than 0.98)
between samples. In such cases the results should be extended to include
the higher values of p . At any rate there may be circumstances where,
due perhaps to very high data correlation or high tolerable error probability,
the use of a practical implementation of the minimum-error demodulator is

desired.

The most obvious implementation, suggested by combining
equations (2. 3) and (3. 3), is to use n2™ finite-time correlators (i.e., one
for each of the possible 2™ transmitted word waveforms in each of the n
word time slots considered) to evaluate the factors of the form h(zi-yi(p)),
then combine these factors and g(yl, ---, yn) by appropriate exponentiation,
summing, and weighting, in accordance with (2. 3) for each Yj(p)’ and
select the yj(p) giving the largest result. But, as indicated by equation (3. 4),
the correlation operations may be done bit-by-bit. And since the zir's are
given and yi(p)r has only two possible forms, i.e. fl(t) or fz(t), all of the
required correlations can be performed by one pair of correlators with
references fl(t) and fz(t). These correlators may then operate on the zir's

to produce the terms on the right hand side of equation (3.4), which are of

f ix i(p)I

Ts
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But since there are only two possible yi(p)r's (i.e., fl(t) and fz(t)) and

only mn (given) z, . 's involved in a demodulation, there are only 2mn
possible results for the above operation. Hence these Zmn resulting values
may be stored, with appropriate indexing, and combined by digital computer
or similar device according to equations (3.4), (3. 3), and (2. 3) to produce
evaluations of p(yj(p) ‘ Z 5= zn) for each p. Therefore it is not a com-
pletely unreasonable task to realize such a demodulator in principle. But
with present computing speeds only a few words (demodulations) per second

can be handled for n =2, and even fewer for larger n.

Because of this limitation in operating speed and the complexity of
this "optimum'' (minimum-error) demodulator, a simpler "approximate"
implementation of the demodulator may be desirable. One such approxi-
mation may be derived by a modification of the optimization procedure as
follows. Suppose that instead of being given the n received noisy signals,

z,,=--»2 , We are given the received signal, z_, and the n-1 previous trans-
n

1’

mitted signals, Yoo Yoy and we wish to make a minimum-error proba-

1
bility estimate of Yo That is, we wish to select the yn(p) which maximizes

the conditional probability distribution, p(yn(p) I Yoo Yo zn). The yn(p)
which maximizes this conditional distribution would be a better estimate of

the transmitted yn(s) than would the estimate which maximizes p(yn(p) |zl, --= zn)
since the y's are not contaminated by noise as are the z's, but AT 4

n-1
are not known at the receiver. However, we may assume that estimates of
these are known from the previous n-1 demodulations and will be used in-
stead of the actual y's. (Since the objective here is to derive a simple imple-
mentation of a ''nearly optimum'' demodulator or estimator, we have tacitly
assumed that use is made of z and estimates of y's occurring in time prior
to z but not after z - This is not a necessary limitation since by perform-
ing successive (iterative) demodulation operations, use can be made of

previous estimates of y's occurring both before and after z if desired.)

Therefore we must determine the operations on Yoo Y, .1’ 2, necessary
- n
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to evaluate p(yn(p)! Yy = yn-l’ zn) so that we may select the yn(p)

which for any given Yy Yy ® gives the maximum value.
-1" ' 'n

1

S(YI’ ==y Yn_l, Yn(p), Zn)

p(y y ,--')Y _152 ): =
n(p)l 1 n n w(yl, ,yn_l,zn)

_ Y V) VL Y T Y1 Yy
W(Yl,-—-,Yn_l, zn)
g(Yn(p)Iyl,---,yn_l)v (znlyl,---,yn_l,yn(p)) 6. 1)

I‘(anylx""": Yn-l)
But v(znlyl, ---,yn_l,yn(p)) =v (znl yn(p)) =h (Zn - Yn(p))

where h(n) is the probability density of the additive noise, n(t).
Since r(zn I yyr === yn-l) is not dependent upon yn(p) it can be considered a
constant, I/KC for the maximization with respect to yn(p). And since each
set of waveforms, Y=oV represents uniquely a corresponding set of

- quantized data samples, Y ,---, Yn’ the conditional probability distribution

1’
S(Yn(p) 'Yl. -—- yn_l-) may be replaced by f (Yn(p) ,Yl’ ---, Yn-l)' Hence,
for additive band-limited gaussian noise of spectral height K2 (see page 69

of Reference 14):

p(yn(P)Iyl, —"’Yn-l’zn) =Kc(z) h(Zn-yn(p)) t (Ynip) |Y1’ -m X

n-1
1 2 2 ‘
:Kd(z) exp <— ——Z—f yn(p) dt) exp <—-Tf yn(p)znda
K T K T
w W

(6.2)

f(Yn(p) IYI’ T Yn—l)

If the two waveforms, fl(t) and fz(t), used to represent the binary code have

equal energies,the first exponential factor in (6. 2) will be the same for any

. yn(p) and can be absorbed into the constant, Kd(z), (Kd(z) is a function of z
but not of y ( )). The exponent of the second exponential factor can be
n\p
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obtained for any yn(p) by a finite-time correlator with reference Yn(p)

and input z - It should be noted that the amplitude of the reference yn(p)
must be equal to the amplitude of the signal component of z - Therefore,
signal amplitude as well as noise spectral height, K, (proportional to
receiver noise figure) must be determined in order to obtain the exponent
of the second factor. The last factor has, in general, a different value for
each Yn(p)' It is a value whose logarithm must be added to the exponent ob-
tained by the finite-time correlator with reference yn(p) (or, equivalently,
a value which must multiply, or '"weight,'' the result obtained by expo-
nentiating the correlator output). If the values of the first exponential
factor of (6. 2) are not constant for all yn(p)’ they must be determined for

each Yn(p) and then treated in the same way as the values of the last factor.

The values of the last factor, f(Y |Y ymm=y Y ), can be ob-
n(p) 1 n-1
tained to very good accuracy, for gaussian data, by evaluating, for each

Yn(p)’ a gaussian probability density function with mean and variance deter-

mined by Y., ---,Y Expressions for determining both the mean and

1’ n-1°
variance of the gaussian density function may be obtained in either of two
ways. The first method is to use the technique outlined in Chapter 9 of

Reference 9 for calculating the '""regression function' of Y » which is

n(p)
simply the mean of f(Yn(p) IYI’ ——— Yn 1) and is a linear function of

Y ,---,Y » the coefficients being determined by the correlation coef-

1’ ' "n-1

ficients of the data samples Y Y Also outlined in Reference 9,

I’ "7 Tp-l’

is a technique which can be used to calculate the variance of f(Y |Y s ===, Y )
n(p) ! 1 n-1

from the correlation coefficients between data samples.

The second method for getting expressions for the mean and vari-
ance of f(Yn(p) IYI’ ---, Yn-l) for gaussian data is by optimum linear pre-
diction to minimize mean-square-error, noting that for gaussian signals the
optimum linear predictor is the optimum predictor (see page 275 of
Reference 6) and that the prediction which minimizes mean-square error

must be the mean of the (conditional) probability distribution. Consider the
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problem of linearly predicting a value, YZ, of a signal, Y(t), when some

value, Yl' is known and when Y1 and YZ are separated in time by an

. . A
interval U . Let the predicted value of Y2 be YZ' Then QZ =WY1 where
W may be a function of T , but not of Yl. The prediction error is

A
e =Y2 - Y2 =Y2 - WYl and the mean-square error is

2 2 2, 2

e = YZ - 2WY1Y2+W Y1

Let: Y1 = YZ =0

t— . 2

Y Y, =R(T) =,o(L)J
Then: _

e’ =0 '-zwp52+w2€2

e 2 .
To minimize e with respectto W

J e’

ow
or W = P( T)
Therefore P( T) Y1 is the mean value of the conditional probability distri-

=-2 F,ﬁznw&z:o

bution 1'(Y2 | Y.). The variance of this distribution is the mean-square-
1

error of this prediction or:
eZ =GZ _ 2,02 6-2 +PZ 6—2 =62(1‘P2)

This procedure can be applied for any number of known points, Y_, ---, Yn

v -1°

The expression for p(yn(p)l Yprmm Yoy zn) given in equation (6. 2)

n-1
indicates that we can determine the yn(p) which maximizes this expression by
cross correlating the received waveform, zn(t) with each yn(p)' obtain an ex-

ponential of each correlator output, and weighf each of these with the
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1 ). (Additional

weighting is necessary if the Yn(p)'s have unequal energies.) The maxi-

corresponding conditional probability f{( Yn(p) lYl’ ——— Yn

mum result thus obtained corresponds to the most likely yn(p) for any

given z_ and VATRRRED AU

Error probabilities for this ""near-optimum'' demodulator have not
been computed, but their computation by the monte-carlo technique would
be considerably simpler and require much less computer time than for the
minimum-error demodulator, and the computation time does not increase so

rapidly as n gets large.

Another "approximation'' of minimum-error demodu,la.tion1 which
makes use of data correlation would be the detection of individual bits
(rather than words) after averaging the signals for that bit-time over an
appropriate number of sequential samples. The '"appropriate number "' of
samples used would be different for bits of different order as may be seen
from the following qualitative discussion. It will also vary with signal-to-

noise ratio and with correlation between data samples.

Certain bits, or binary digits, (such as the most significant bit)
of ordinary binary PCM code words representing data are not likely to
change for several sequential samples if there is high correlation between
data samples. If the detection of these bits, contaminated by additive
gaussian noise of zero mean, employs some linear smoothing process,
such as a correlation detector, the noise component out of the smoothing
device is gaussian and its mean-square value decreases as the smoothing
time increases. Therefore if a bit does not change for several samples, a
better detection could be accomplished by smoothing that bit over several
samples. But if the bit is smoothed over too many samples it will probably
change once or more during the '"'smoothing time'' and the resulting de-

tection may be poorer than for smoothing over one sample only. There will

1 This approximation was suggested by Professor Rauch.
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in general be an optimum number of samples over which each bit of a PCM
code should be smoothed for given data correlation and signal-to-noise
ratio. A feasible method for determining these optimum numbers of
samples is not readily apparent, One conceivable, but crude, approach is
to assume values of correlation coefficients /_)(kTs) for samples separated
by k sample periods Ts, and of smoothed output signal-to-noise ratio, S/N -
(for smoothing over a single sample). Then calculate the probability of
error for each bit position of the code (i.e., most significant bit, second
most significant bit, etc.) for smoothing over two samples, three samples,
etc., to determine the optimum number of samples for minimizing the

probability of error.

The bit error probability for the rth bit after smoothing over n

samples is

P

Enr P.Q

nj jr

et

J:

t
Where er is the probability of occurrence of the j h combination
of bit values (1's and 0's) for the rth bit in the n (coded) samples, and Pnj
' h
is the bit-error probability after smoothing over this jt combination of bit

values.

For example, for n =2 there are four possible combinations of bit
values for any given bit. These are 00; 01; 10; 11, for which we let j =0;
1; 2; 3 respectively. Let S/N be the ratio of peak signal to rms noise out
of the smoothing device (e. g. , aperture filter, or finite-time correlator)
after smoothing over one sample only. Then for bit combinations 00 and

11 the value of P, after smoothing over two samples is (for gaussian noise):

2j
- {2"s/N
-xZ/Z

- 1
PP~ f € dx. B
- 0O
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since peak signal out remains the same while rms noise decreases by {Z—' .
These values can be found from gaussian tables for any S/N. For bit
combinations 01 and 10 the value of sz after smoothing over two samples
is P21 = P‘22 =0 since peak signal out is zero.

The corresponding values of er are more difficult to calculate.
They depend upon the statistical dependence between data samples and will
be different for different bit positions, r. For the most significant bit (r =1)

the probabilities of occurrence for 00 and 11 (i.e. for j =0 and 3) are:

h Yy
01 -f J. p(Y . Y,)dY 4y,
—m -m

o0 oo
31 -f f p(Y,Y,)dY ay,

v h

O
I

&)
|

where Y_1 and Y2 are the first and second data sample values, Yh is the
half-scale data value, and p(Yl, YZ) is the joint probability density for data

samples Y, and Y,. If the data is assumed gaussian, the er's will be

1
determined by the correlation coefficient, p(Ts). The probabilities of

occurrence for 0l and 10 (i.e. for j =1 or 2) are:

Y
co h
Q, = [ j p(Y,,Y,)dY dy,
Y T-o0

Y, oo
Q,, = f j p(Y), Y,) dy, 4y,

~00 Yh
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For the second most significant bit (r = 2) the double integration must

cover four separate regions of the YIYZ

QOZ the integration must cover the regions where the Y1 and Y_ values

are either less than quarter-scale or between half-scale and three-quarter-

space for each sz. That is, for

scale (i. e. ’ the regions where the second most significant bit of both coded

samples is ''0'"); for Q _ the integration must cover the region where the Y -

12 1

value is either less than quarter-scale or between half-scale and three-

quarter scale while the Y value is either greater than three-quarter scale

2
or between quarter-scale and half-scale (i.e., the regions where the second
most significant bits of the first and second coded samples are '"0'" and '"1"

respectively); etc.

In principle this approach can be extended to any number of sample>
and any number of bits, but the computations rapidly become very complex.
A serious attack upon the problem of determining the optimum number of
samples over which the bits should be smoothed might well yield a better
approach. The optimum number for any bit (order) would surely be
dependent upon S/N and the p 's, thus requiring knowledge at the receiver
of signal-to-noise ratios and data correlation. But such knowledge is also
required for the optimum (minimum-error) demodulator and for the 'near-
optimum'' demodulator discussed earlier. Such knowledge appears to be

necessary in order to combat thresholding.

Thresholding is considered here to be the phenomena which causes
the mean-square error of the demodulated signal to increase faster than the
input mean-square-noise-to-signal ratio. For systems employing both pulse.
code-modulation and some form of rf-modulation (i.e., AM, PM, FM) thres-
holding will, in general, result from both. But the minimum-error de-
modulator completely avoids thresholding due to rf-modulation. This is
apparent since different types of rf-modulation merely require different
waveforms, fl(t) and fz(t), for representing the binary character of the

coded signals. But we have found in Chapter 5 that the statistical results
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obtained by the minimum-error demodulator (for error probability or
error amplitudes) is dependent only upon the parameter O¢ , defined by
equation (5. 1); and for any X (between -1 and +1) we can find waveforms
fl(t) and fz(t) corresponding to an AM-modulation, which exhibits no thres,

holding due to the rf-modulation.

That thresholding due to the pulse-code-modulation is combatted
somewhat by the minimum-error demodulator can be seen qualitatively from
the result (also discussed in Chapter 5) that this demodulator reduces errors
primarily in the high order bits of the codes. Quantitative data on PCM-
thresholding could be obtained by monte-carlo computations similar to
those reported here, but computing error amplitudes, (rather than error
probabilities) from which any error amplitude parameters such as rms-
error or mean-absolute error could be obtained. Such results would also
be of value for determining gains available from minimum-error demodu-
lation for specified error amplitude parameters rather than specified error
probhability. Of course thase results would not necessarily represent the
- maximum theoretical gains available for the specified error amplitude
parameter. The determination of such maximum gains would require the
derivation of a demodulation technique for optimizing the specified error

amplitude parameter.

Auother worthwhile extension of the results reported here would
be the Aetermination of a simpler method for calculating the low values of

word-error probability P __ (e.g., for PW << 0. 1) since these computations

w
require very large computation time if the monte-carlo method is used. An
approximate analytical method might be determined by presuming that for
low error probabilities most of the erroneous words will have only one bit
in error. Another approach might be to presume that the results obtained

for the "near-optimum' demodulator discussed above are, for low error

probability, very close to the results for the optimum demodulator. This
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seems a reasonable assumption since for low error probability most of the
'"previous estimates'' used in the near-optimum demodulator should be
correct, particularly if the word error probability is low when no use is
made of data statistics. Monte-carlo computations for the near-optimum
demodulator would require much less time than for the optimum demodu-

lator. This would permit extension of the results of Figures 6 and 7 to

higher values of ﬁ V1-o<.




APPENDIX I

MINIMUM BIT-ERROR PROBABILITIES FOR DEMODULATION

OF RANDOM IDEALIZED PCM/FM

The statement made in Chapter 1 (page 6 ) that ''---the most
probable y(t) can be determined one—bit-at-a-time ---" assumes that
during any bit time the PCM signal is one of two waveforms, fl(t) or fz(t).
which are known independently of the waveforms existing during other bit
times. For conventional PCM/FM in which a single oscillator issfrequency
modulated by a binary signal, this assumption is not true for non-integer
deviation ratios since the phase of the sinusoid during any bit-time depends
on the binary modulating signal during other bit-times. (Deviation ratio
is the ratio of total frequency deviation to bit rate.) In such a case, the
most probable y(t) waveform is not necessarily that determined by select-
ing the most probable waveform, yB(t), for each bit-time. But the latter
is the selection which minimizes bit-error probability if the entire received
waveform, z(t), is used in making each bit decision --- that is if we choose,
for each bit-time, the yB-waveform which maximizes p(yB |z). However, if
we assume that the phase of the two possible sinusoids is known for each
bit-time, then p(yB] z) =p(yB| zB) and we may make minimum-bit-error-
probability decisions one-bit-at-a-~time and without reference to the received
waveform, z(t), during other bit-times. The bit-error probabilities thus
obtained can not be greater than those obtained without the assumption of
known phase for the two possible sinusoids. Hence a lower limit on bit-

error probability can be established by assuming the phase to be known for

each bit-time.

Therefore, for purposes of calculating a lower limit on bit-error
probability we may consider the minimum-error PCM/FM demodulator
(making no use of dependence between bits) to consist of two sampled, finite-

time correlators whose sampled outputs are subtracted. The correlation
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time is one bit-time and the outputs are sampled at the ends of the corre-
lation times, which are assumed to be coincident with the ends of the bit
times. The reference for correlator 1 is a sinusoid of frequency fl phase

coherent with transmitted waveforms of frequency f , and the reference for

1

correlator 2 is a sinusoid with the same amplitude but of frequency f_ phase

2

coherent with transmitted waveforms of frequency f We will let the

2
sampled output of correlator 2 be subtracted (in a comparator) from the
sampled output of correlator 1. When this difference (i.e., the comparator
output) is greater than zero, the demodulator will indicate that the trans-

mitted waveform was of frequency f When the difference is less than zero

: Iy
it will indicate that the transmitted waveform was of frequency fz. We now
calculate the probability that this indication will be in error when the trans-
mitted signal is contaminated by independent, additive white gaussian noise

of single-sided spectral height KZ voltszlcps (or two-sided spectral height
2

2 K
k' = > ).
A finite-time correlator of the type discussed above is a device
which forms the product of a reference waveform and an input waveform,
and averages this product over the correlation time which in this case is

equal to the bit time T Since this is a linear operation on the input, we

may consider‘separatellay the signal component, y(t), and the noise component,
n(t), of the input, z(t) =y(t) + n(t). Let us consider the correlator with refer-
ence Rl(t) =C cos (Ct)1 t+ 4>1). The signal component, y(t), of the input may
have either of the forms: yl(t) =A cos ((,Jl t +¢‘l) or yz(t) = A cos ((A)Z t+ ¢2).

If it is yl(t), the resulting sampled correlator output will be:

Tn Tn

1 _AC 2
Sm = - T f Rl(t)yl(t) dt = TB j cos ((«)l t+¢l) dt

[0} (o]




_ AC 1
S = 1+ T f cos 2((,&)1 t+¢1) dt

B
o
w
~ AC . 1 1
) if ——— > 3
B
The output due to signal yz(t) is:
TB TB
S = —— R, (t)y.(t) dt = 2 cos (L), t+6.) cos (L), t+6.) dt
w Tg 1172 T, 1 1! co8 1, 2
o o
B
- AC
= ZTB (f cos [(a)l +(<)Z) t+(<1>1 +¢2)] dt
o
TB
+ f cos [(c.)z -(,Jl) t +(t1>2 - tbl)_] dt
o

Similarly we find that for the correlator with reference Rz(t) =
C cos (Q)Z t+ ¢2) the sampled output due to signal yz(t) is Sm (witha)l re-
placed bya)z, and 4)1 by ¢Z) and the output due to yl(t) is Su' That is, for
either correlator, the output resulting from the '""matched' signal is Sm
while that resulting from the '"unmatched'' signal is Su' Hence, the output

of the comparator due to the signalis § =% (Sm - Su).
o

B

~ AC 1
But (sm- Su) == (!- ,—r—];- f cos [(Q)l +u)2) t +(d>1 +¢2)] dt

© T
B

1
- Tr-;— f cos [(Q}Z -Ldl) t +(¢2 - ¢1)] dt
o
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B
~ 1 ‘
(s_-s5) T2 (1 - f cos (L), ~LJ)) t+(é, - ) at |
B : ‘
O

W) W, 1
S e 2P T

We now calculate the output due to white gaussian noise.

The sampled output of either correlator due to noise n(t) is:

Tp

N(T) ='Tl" f R(t) n(t) dt
B

o]

and the noise output of the comparator is:

TB
N(T)-N(T)=——1—-f [R(t)-R(t)] n(t) dt
. m B u B fFB 1 2
. .

- Hence, since R1 and R2 are not random, the variance of the noise output of

the comparator is:

R R

N
TB TB
_ 1 f f [R(T-R(T)] [RUT,-RAT,)] WTT,) aT,aT
T 2 A LR AR L TL-RT, ) ) aT,
B
o o
TB
2
=——]£Tf [Rlz(T)+R22 (‘T) - 2R, (T) R, (T)] a T
TB
(o]

since

2
TP AT,) =5 (T, - T,
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2 . . -
where k is the two sided spectral height of the noise. (x is used here to

indicate the ensemble average of x. ) Therefore:

T
2 B 2 2 '
0'-2 = ——k—é—- f [C cos ((AJl’t+ ¢1)+C2 cosZ (QJZ"C+¢2)
N T
B
o 2 ‘
-2C COS(CJIT +4>1) COS(CJZT +¢2)] a7T
TB
CzkZ
= —— f 2 +cos Z((,dl’t"+¢1)+cos (), T+9.,)
2T 2 2
B
o
-2.cos [ (W +L,)T +(b, +¢,)]
- 2 cos [ ((JJZ -u)l)T-!-N’z - ¢1)]> aT
=22 '8
~ C 1
= TB - ?B—— f cos [(bdz -Q)I)T +(¢2‘- ¢'1)] dT)
(o] (4)1

: 1
i —= >> Tg

and t)fr >> -

B

The conditions on the (J 's are satisfied in practice since a bit-
interval contains many cycles of the carrier, (The consequence of these
conditions not heing satisfied is discussed in Appendix II. ) Hence the ratio

of signal amplitude to rms noise out of the comparator is:

Tg

s S -8 AT 4
o _ m u B 1 T T
1- T, _[ cos [("‘Jz'wl) He,-0)) ] @

2k

o
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- So B} S 1_<sin(21rD+6(1>)—sin6<1>) (I-1)
0. K {B 2w D

N
where: S =A/ ¥2' =rms value of input signal
1 .
B = -T—— = bit rate
B
"‘Jz B “)1
D= =B - ratio of total deviation (in cps) to bit rate

5 ¢ =¢Z - ¢1 =difference in phase of references at beginning
of bit interval

2 2
K =2k =one-sided spectral height of noise

The quantity ''D" is often defined as the deviation ratio for PCM/FM.
The quantity "6 ¢'' might, of course, be different for different bit intervals,
but it is zero for conventional PCM/FM systems in which a single oscillator
is frequency modulated by the binary PCM waveform. For this case, we
wish to find the deviation ratio, D, which maximizes the ratio of signal
.amplitude to rms noise, So/ G-N' out of the comparator, hence minimizing
the error probability, The usual maximization procedure yields the optimum

deviation. ratio.

D =0.715
opt

The resulting So/ O_N is:

s -
—_— =1.1 -5 > (I-2)
G_N | K {B
opt.
- PCM/FM

An error will be made when the noise out of the comparator exceeds the
amplitude of the signal out of the comparator and is of opposite algebraic

sign from the signal. Since all operations on the input are linear, and hence
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the noise remains gaussian, the bit error probability is then

wn

2
P = ! f X 12 4y (I-3)

2
(PE) 1 f e * /2 dx  (I-4)
opt. ‘IZ T

PCM/FM
- R
'5 K (B

Note from equation (I-1) that if the deviation ratio is any integer, the output

where

signal-to-noise ratio is (with 6 ¢ = 0):

> = (I-5)
- s

The corresponding bit-error probability is:
) - f
12 L
D=n - oo

Therefore, the minimum obtainable bit-error probability is the same for

2
x/Z gy (1-6)

any integer value of deviation ratio. It may also be noted that the optimum
combination of values for §  and D (i. e., the combination of values which
maximizes I-1) is:

6d=m

D=0
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This corresponds to phase shift keying (PSK) with phase shift of v radians,
which is exactly equivalent to suppressed-carrier PCM/AM. The resulting

output signal-to-noise ratio and error probability are:

N/ pcMm/psk

-3

. ,
(PE> S f e X 1% ax (1-8)
{2 T

PCM/PSK
- 00

Since 50% of the power in a PCM/AM signal with 100% modulation is in the
carrier, the outpht signal-to-noise ratio and error probability for correlation

detection (i. e., maximum-likelihood demodulation) of PCM/AM (non-sup-

pressed-carrier) are:

s
(o]
= (1-9)
Oy / '6
PCM/ AM A
| 2,
P ) - f X 12 4 (I-10)
E) pcm/aMm 2 |
- 00 A

For PCM/FM with random & ¢ resulting from non-synchronous
switching between two oscillators of frequencies ‘*)1 and QJZ. 6 ¢ is
uniformly distributed between + 7 and - 7 radians; and from equation {1-1)

we see that

2 . ; .
So _ is a function of 6 ¢ and hence is a random variable,/ S

O a

N

(5 9) |

2

L
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with symmetrical distribution (that of a sinusoid) about its mean value of ﬁ .

It may be seen that the maximum amplitude of the variation of / S 2

N
about/j' depends upon the deviation ratio, D, and is zero for D equal to any
integer. We may consider the error probability, PE (6 $), to be a function of
5 ¢ and hence also a random variable:

S

[s]
- 5
P_(6¢)= — f x/2
E e
JZT!‘ :

- o0
Now from this expressmn, since §/ O_ must be positive, any two values of
| [S/O- (6 ¢)_] symmetrically spaced about its mean value, ,82, will
yield two error probabilities whose average is ea.s11y shown to be greater
than the error probability for [S/ G—N (6 ¢)_] ﬁ Therefore any
symmetrical variation of [S/O_N (6 ¢)] about its mean, /82, will result ir,

a higher average va.lue of P_. than if the variation of S/ were zZero.
4 g N

E
Hence, for PCM/FM resulting from non-synchronous switching between two
oscillators, the lowest possihle error probability is obtained with D equal

to any integer, and this error probability is:

, -8
..x /2
(PE> . dx (I-11)

switched
PCM/FM

which is the same as for PCM/AM (with carrier).




APPENDIX II

AN UPPER LIMIT ON THE INACCURACY OF PCM/FM RESULTS

DUE TO CARRIER FREQUENCY MUCH GREATER THAN BIT RATE

From Appendix I we see that with ¢1 =¢2-=¢ (i. e., conventional

PCM/FM), if we do not assume that &)1 1 and O.)Z 1
L > L
T TB VAR TB
then: sin [ZQ) T +2¢] - sin 29
s =s_ -5 =-—2% [, LB
o "m u 2 ZCJITB

sin [(Q)l +(A)Z)TB + Z¢] - sin 2¢  sin 27D

() +a)7_)TB 27D
. L‘.} - N -
_AC [, sin2w |, ac [ =° [20d, T +20] - sin 26
T2 2uD 2 ?“*)1 TB.

sinf(C+ 0, )Ty +2¢] - sin 24

(W +a)2) Ty
=K, (G+V)
where: K - AC
i T 2
sin 2wD
G=1- —p—
.. sin [zaJl T, +z¢] - sin 24 _ sin [(f,\)1 +0d)) T + z¢] - sin 2¢

zwl Ty (‘*)1 +u)2) Ty
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Similarly we find that

52 =K, (G + W)

N
Czkz
where KZ = T
B
sin [zw T +z¢] - sin 26 sin [zcd T +z¢] - sin 2¢
1 B 2B
and W = +
4:(4)1 TB 4&)2 TB
sin [(wl +,) T + _z¢] - sin 2¢
(W, +ch) Ta
therefore
S, K (G+V) G+V

[ = = K r————

JN (K, (G+W) > crw
Now in Appendix I, by neglecting the terms V and W we obtained a simplified
expression for S/ O_Nl:

S K’] G .
) e el
N 2
s
We wish to find an upper limit (as a function of Ldl TB and D) on the (positive)
value of:
S S S
o __o o)
) G o,
F = S =1 - S =1 - R
o )
N CS-N
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This quantity must be non-negative since So S

>_o
0, 0,

N
s

This follows from the following reasoning: Error probability is
a monotonic decreasing function of output signal-to-noise ratio. Hence we

and (A)Z ,

have shown in Appendix I that if the carrier frequencies, ¢J

1
2 2w
are arbitrarily high, So is the highest obtainable value of output
Oy

s
signal-to-noise ratio, If the carrier frequencies are not high (relative to

the bit rate) the highest obtainable output signal-to-noise ratio is So .
Oy

But since any signal with low frequency carrier could be obtained by multi-

plying a signal with arbitrarily high carrier by a sinusoid and filtering to

eliminate the sum frequencies (although the inverse is not necessarily

possible), So cannot be greater than So . Also, since both
Oy \ N
So and -So must be real and positive, so must their ratio, R.
On Oy

s
2 2
Therefore if we can find a lower limit on R™ (i.e. (R )min then an upper

limit on F is established since F =<1 - \/(RZ) '

min
2 (G+VZ v V-Ww (V W)2 Vv V-W
R” = AG+V) =1+ + - + ?: = 1+ +
G(G+W) G G G +GW G G
(I1-1)

= =x +2
Let Q)l TB x and (,4,)2 TB X wD
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t : . .
hen y = Sin (2x + 2¢) _ _sin (2x + 27D + 2¢)+ sin 2¢ sin 2¢
2x 2x + 2D 2x + 27D B 2x
- 2x [sin (2x +29) - sin (2x + 27D + 2¢),] + 27D [sin (2x + 2¢) - sin Zrbj
2x (2x + 27D)
. 4xsinw D cos(b&+2¢+nD)] +41rD[cos(x+2¢)sinx]
' 2x (2x + 2wD)
\4 << 29t D+eD é
k Ty
peat — x{x+m D) P
Similarly:

gin {2x +20) - sin 24 sin (2x+4 v D+2¢) - sin 24

V-W:‘* -
4x 4 (x+2 wD)

2x sin 2 D {cos (2x +2¢ +2 wD)] +4 7D Lcos (x +29) sinx]
4x (x +2 v D)

(V-w) < xsin2wrD+27D A
peak = 2x {x +2 D) =Q

A liberal lower limit for R2 is obtained by using the negative peak

value limits for V and V-W in equation (II-1) i.e.,

2 |p] lo|
R Z1- —5 - TG

and hence a liberalupper limit for F is

F<1- \fl- —Ig—l- .—|g—|—’=1- 1- U

1 1-1 2 1-1-3 3 1.1.3.5 4
= == U+ > U+_—_—-2-4-6 U + >STA. 6.8 U + ...
s el _lo|
where: U G + G
This upper limit for F is plotted as a function of deviation ratio, D,
for (")1 - 10 in Figure II-1. (This limit is obviously very liberal,
2w T TB

at least for low values of D, since the true limit is zero for D =0.) Hence,

if the lower carrier frequency, (,J , 1s at least ten times the bit rate, we

1
2w

see from Figure II-1 that the theoretical curve of Figure 2 (i.e. for D =_715)

cannot be in error by more than 0. 8%, or . 007 db, on the ﬁ axis.
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APPENDIX III

FM RECEIVER OUTPUT NOISE

The development of a theoretical treatment of PCM/FM re-
ception (with a receiver using a conventional discriminator) which would
yield results consistent with experimental measurement would require an
expression for the amplitude distribution of the filtered video noise for any
deviation. Although no such expression has been derived, one of Rice's re-
sults (Reference 12 equation 5.4) can be interpreted as the amplitude distri-
bution of unfiltered video noise for any static deviation. In an effort to de-
termine whether or not Rice's result might be used in some way to predict
PCM/FM error probability, the theoretical amplitude distribution of un-
filtered video noise was calculated (using Rice's result) for a 60 kc static
deviation {measured from the center of the discriminator characteristic
which is assumed aligned with the center of the I. F. ) using the actual
measured I. F, bandpass characteristic of an available Nems-Clarke FM
receiver (effective noise bandwidth of 126 kc and measured noise figure of

7 db) and an input signal ic noise power ratio of 6.8 (8. 3 db).

The video noise amplitude distribution was then measured experi-
mentally, with the same parameters, (with both static deviation and square
wave modulation) using the Nems-Clarke FM receiver. The experimental
set-up was that shown in Figure III-1. Theoretical and experimental re-
sults are presented in Figure III-2. The video noise amplitude in these
plots is in units of equivalent deviation so that the video ''bit decision level”
or "slice level" is at -60 kc on the plots (since the deviation due to the signal
is £ 60 kc). Therefore, the value of the cumulative probability of the noise
at - 60 kc is just the bit-error probability. From the curves of Figure III-2
it is seen that the bit-error probability measured for the static case (Curve
B) is almost identical with that calculated (Curve A). Also, the ﬁleasured

and calculated curmulative probability distributions agree very well. The
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measured dynamic curve with 60 kc bit rate and no video filter (Curve C)
agrees fairly well with the calculated static curve, giving only slightly
higher bit error probability. Hence it would seem that if a video filter
cutting ofr at six tenths the bit rate were now used, it should decrease the
bit-error pz;oba.bﬂity significantly since the rms video noise can be calcu-
lated or observed to be considerably less with the video filter while the
signal amplitude is not appreciably affected. Curve D shows, however,
that the bit-error probability is hardly affected at all by the video filter,
although the shape of the noise amplitude distribution is modified quite a
lot. Measurements were made using other combinations of bit-rate and
deviation and, in general, the addition of video filtering does not appear to
have much effect on error probability unless both deviation and bit-rate are
low (1/4 or less) compared to the I. F. bandwidth. This conclusion may

also be drawn from the results of the measurements of Reference 15.

These results indicate that there are at least two separate
phenomena causing bit-error in a conventional PCM/FM receiver. One
seems to be due to the occasional occurrence of I. F, noise amplitudes
large enough to cause errors. This phenomenon appears to be a gradual
(rather than abrupt) occurrence of the '"improvement threshold'" phenome-
non. Errors resulting from this phenomenon seem unaffected by video
filtering. The other phenomenon causing bit-error is the familiar video
noise with parabolic power spectrum (Reference 10 page 52-54) which is
affected by video filtering, but does not contribute significant error unless

the deviation is low compared to I. F. bandwidth.




APPENDIX IV

GENERATION OF SETS OF VARIATES FROM AN

N-DIMENSIONAL GAUSSIAN DISTRIBUTION WITH

- SPECIFIED CORRELATION COEFFICIENTS

The generation of random gaussian variates is a fairly routine
task, particularly when a digital computer is used. Standard computer sub-
routines are available for the generation of sets of independent variates
from a gaussian distribution with any specified mean and variance. But it
is sometimes necessary to generate sets of variates from an n-dimensional
gaussian distribution with specified correlation coefficients, pij' for each
pair of variates. This can be accomplished by first generating a set of n
independent gaussian variates and performing a linear transformation of
them. The required transformation equations for a specified covariance

matrix are derived below.

The joint probability density function for n gaussian variates, Yy
Yyr=== Y o with zero means may be expressed in matrix form as (see

Reference 1 Section 8-3):

' 1. 1 T _.-1
g(YleZ:“"sYn)— (Zn)n/z IM| 1/2 QXP<‘ _“'Z Y M Y)

(Iv-1)

where M is the (square) covariance matrix
— —

'\11 ?\12 T 7\1n
N2 N2z T 7\Zn

7\n1 ?\nZ T ?\
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in which >\nm " Yo'm T 0;1 Jm P nm
2 .
0‘ =variance of A
i
and where IMI is the determinant of M
M " is the inverse of M
Y is a column matrix with elements YyrYpr===e¥ -

Y.'T is the transpose of Y

For uncorrelated gaussian variates, v_,v_,---,v , the covariance
n

1 2
matrix is a diagonal matrix, D: '

d 0 .- 0
0 d --- 0
D= 2
0 0 ——- d
— n—

where dl, dZ.' - dn are the variances of VI'VZ’ ---,vn;

- and the joint probability density function is:

1
Blv vy m=msv ) = n/ 2 l

T exp ( -—f,_- viply) v-2)

(27) D |

Now a square matrix, M, can be reduced to a diagonal matrix such

as D bv the matrix operation (see Reference 4,Chapter III, Art. 10):

p=plump (Iv-3)

where P is the "modal'-matrix whose column elements are the components

of the unit eigen vectors, e ,e,, ---, e of the matrix M. These eigen

1" 72
vectors are the normalized solutions of the matrix equation:

M ei] =M ei]

where e_]' is a colwumn matrix with elements e,l, eiZ' —--ein.
i i
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and the A i's (eigen values of M) are solutions of:
[M- A1 =0

1 is the identity matrix, 0 1 -——— 0

Since M is a symmetric matrix, the existence of a nonsingular

modal matrix, P, is guaranteed. Furthermore, P is an orthogonal matrix
-1

. . s T
and therefore its transpose is equal to its inverse: P~ =P

We seek a transformation which will transform any set of v's (un-
correlated gaussian variates) into an equivalent set of Y's (gaussian
variates with specified covariance matrix, M). That is, if g(vl,vz, ---.vn)
of (IV-2) is evaluated for any set of v's, we wish to determine the set of y's
which will give the same value for g(yl, Yor === yn) of (IV-1). The factors
in front of the exponential are the same since
R L R E B R S L R RS RN R L B R BT
Hence we seek the transfcrraation between V and Y which will make

viptly =vTmly (IV-4)

But since D ='P—1MP we have |

p~! =[MP]'l p =plumlp

and therefore:
viply = vTp v tpv = [VTPT] M1 [PV] = [PV] Ty [pv]
({IV-5)
For the right hand sides of (IV-4) and (IV-5) to be equal we must have
Y =PV (IV-6)
Hence this is the required transformation between V and Y. But we must

note that (see Reference 4, page 115):




D=P-1MP= 0 AZ

= —

so that the variance of ! is [\1

the variance of v, is AZ

etc.
Therefore the v's all have, in general, different variances. But when we
are generating sets of variates it is more convenient to select all of our
uncorrelated variates from the same distribution and hence the same vari-

ance., We may select such variates, u,,u,, ~---, u from a gaussian distri-

1" 2
bution of unity variance and transform them, to get the required v's, with

the transformation:

where — —1

Then the required transformation from u's to y's is:

< Y=PLU (IV-7)
For the case n =2 with )\ll = ?\22 =O-Z = 1,and 7\12= 7\21 =62P=P
we have:
L p
M=
p 1
- and

|M—/\ill| = i ID =0
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or /\1 =l+IO
A, =1-p

‘then M e.] = /\.e.] becomes
.1 1 1

Peiz = N, e
Perten =N e,
yielding:
_ 1
‘117 T °12
e = ; e
21 #T 22
Hence - -
1 1 r_‘}l +P
D
PL =

F F

and the trnasformatmn equatlons are:
y, = "__& ‘/_E_
e P ‘/—:&

1
2
2
0— l_l+ 1-
== =52
Vel e

(Iv-8)




APPENDIX V

THE COMPUTER PROGRAMS

The computer program for simulating the minimum-error de-
modulation and for computing (by model-sampling) the resulting error
probabilities was written in Fortran language. It was, in fact, written
with a fairly limited version of Fortran since it was initially written for,
and the program logic checked out on, an IBM 1620 which has a more limited

Fortran vocabulary than does the IBM 7090 used to obtain the final results.

The simulation of the minimum-error demodulation (for two 6-bit

words, i.e., n =2, m =6) is accomplished by evaluating (for any given z,

and zz) the expression p(yz(p) Izl, zz)/Kt of equation(4. 3) for each of the 26
possible yz(p)'s. and selecting the largest of the 26 values so obtained.
This largest value is then normalized (by dividing it by the sum of all the

26 values) so that the result represents the probability, , of the most

P
M
probable yZ(p)’ Then Q=1 - Py is stored for use in obtaining the estimate

P2 of equation (4. 5), or the estimate P3

done for many sets of z's which must themselves be generated by the

of equation (4.9). This must be

computer. Actually, the j 's of (4; 3) are generated rather than the z's
since the f 's represent the only attributes of the z's used in the simulated
demodulation. To insure that the f 's are selected from the proper distri-
bution we select data samples, Y1 and YZ' from the specified data distri~
bution, code the sample values in 6-bit binary PCM code of amplitude

+ S/N (+ for "yes" bits and - for ''no'" bits) (S/N =sgignal-to-noise ratio =
S/K ﬁ_/?) and add to the amplitude of each bit of the codes, constant
independent ''noise''values selected from a gaussian distribution of zero

mean and unity variance (see first paragraph of Chapter 4). The resulting

values are the f 's,
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For signal-to-noise ratios less than 2 the estimate PZ of (4. 5)
is used, but for signal-to-noise ratio of 2 or more. the variance of this

estimate becomes too large and hence P_ of (4.9) is used. In this case the

noise distribution must be modified and fhe Q's ""weighted' as discussed in
Chapter 4. The Fortran (source) programs are presented in Tables 1 and

2 for both of these cases forn =2 and m =6 (i.e., for two 6-bit words). The
modifications required for n =1 and/or m =3 are apparent. They consist
primarily of changing the appropriate indices and, for the case with modi-
fied noise distribution, using a different weighting factor for weighting the
Q's (see Chapter 4 for method of calculating the weighting factors). How-

ever, for convenience, the programs for n =1, m =6 are presented in

Tables 3 and 4.

To facilitate explanation of programs 1 and 2 they have been
broken into eleven divisions which have been labeled A through K (see Tables
1 and 2), Given below for each of these divisions is a brief statement of the
purpose of that portion of the program followed by more detailed explanation

where necessary.

A, Store required constants. The insertion of a "CALL FTRAP(O)"

' statement following the dimension statements may be necessary
to avoid automatic computer stoppage due to underflow arising
from the randomness of numbers appearing in a later portion of

the program.

B. Generate and store 6-bit binary PCM codes corresponding to
each possible transmitted word. The bit values are '+1'" and
""_1" rather than "'1'" and ""0'". Indexing of bit values is such that
JC(I, K) is the Kth bit (K =1 for least significant bit) of the binary
representation of I-1. These, when multiplied by S/N, become the

7’1 's of equation (4. 3).
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Read input data and print identification of output data. Here
SN represents signal-to-noise ratio S/N, and RH represents the

correlation coefficient, 'O » between data samples,

Calculate required constants which depend upon input data, and
set initial values (of CT, CTM, and PSI). RRSCR and RRSC2 are
used later for calculating the joint probabilities f(Yl, YZ) (see E).
Cl and C2 are the coefficients used to transform the independent
data samples into correlated data samples. For program 2, ''D"
and ""G'" are needed for calculating the weighting factors required

when the modified noise distribution is used.

2
- Calculate and store the (64) values of joint probability p(Yl, YZ).

These are indexed such that WT(I, M) is p(Yl. YZ) where Y1 is a

quantized data sample of amplitude I-1 and Y_ is a quantized data

2
sample of amplitude M-1 (see Figure 4).

] and YZ,

represented by JYT(1) and JYT(2). Statements 80 and 95 generate

Generate two quantized correlated data samples, Y

two independent samples, W(1) and W(2), from the proper gaussian
distribution and the other two statements perform the transfor-

mation represented by equations (4. 2).

Genérate binary code words representing JYT(1) and JYT(2),

and add noise from the proper distribution to each bit of these
codes. For program l the '"proper’ noise distribution is gaussian
while for program 2 it is the modified distribution discussed in
Chapter 4. Values of JYT(1) less than zero are set equal to zero,
and values greater than 63 are set equal to 63. This is accom-
plished by statements up through statement 130. The inner "DO
140" loop of program 1 and the inner '""DO 144" loop of program 2
generate the ''bit noises, ' US, (" 's of equation (3.9)) and add
them to the bits of JYT(1l) and JYT(2) ('V( 's corresponding to trans-

mitted waveforms) to produce the noisy received bits, CU(I, K)
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( f 's of equation (4.3)). For program 2 the two statements im-
mediately preceding statement 131 represent the "'auxiliary game
of chance' referred to in Chapter 4 for determining whether the
noise is selected from a gaussian or flat distribution (i.e.,
Figure 5a or 5c). Statement 131 generates noise values from a
ﬂaf distribution of zero mean and range 2B while statement 132
generates noise values from a gaussian distribution of zero mean
and unity variance. Statements 134 through 137 calculate the
reciprocal, (represented by RFN) of the appropriate weighting
factor, %‘;%%— s which multiplies Q (Y, N) of equation 4.9 to com-

pensate for the modification of the noise distribution.

Pre-calculate and store the factors required for evalua.tmg

p(yz( ) ‘ ) Z )for each yz( y These factors are: E

L 172:(p)r f?.r

(of equation (4. 3)) evaluated for each p (these values are represented

T =
by PR2(1) where I =p+1), and exp(r J 771(q)r flr) evaluated for

each q (these values are represented by F1{M) where M =q +1).
Also, statement 165 and the statement preceding it select the
largest value of F1(M) for use in the re-scaling immediately follow-
ing. '

Re-scale factors to utilize the full range of computer capability

to reprint numbers. This avoids overflow and minimizes underflow
due to wide range of values of factors encountered due to random

sampling.

Evaluate p(yz(p) ' z ) ZZ)/Kt of equation (4. 3) (represented by ""P"
in the program) for each YZ(p) (i.e., each "I' in the ""DO 180"

loop) and choose the largest value obtained (represented by '"PP"
in the program). Also, the sum (i.e., ""PS") of all of the values

except the largest is computed.
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K. Normalize the largest value, PP, by dividing it by the sum of all
values, PS + PP, so that the result represents the probability, Py
of the most probable YZ(p)' Then calculate the error probability
estimate PZ' or P3 (see Chapter 4). In program 1, Py is re-
prgsented by PEM and PZ. is represented by AVRM. In program 2,

Q is represented by PEM and P, is represented by AVRI. In

3
program 2, the statement "PEI = FN * PEM' represents the weight-
ing of the Q's indicated in equation (4.9). AVRB represents an
auxiliary estimate of error probability. It was calculated merely

for experimental purposes and can be ignored here.

The remaining portion of the program is for printing the results

and establishing formats and is self explanatory.

Programs 3 and 4 are similar, but somewhat simpler than programs
1 and 2. They require no additional explanation. Compilation time required
is slightly less than a minute for programs 3 and 4, and a little more than a

minute for programs, l and 2,
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Table 1 Computer Program No. 1,

Gaussian Noise Distribution

DIMENSION JC(64+6)sXM(64) 3sXMS(64) sCU(256) sW(2)sJYTI(2)
DIMENSION WT(64+64)sPR2(64)sF1(64)sPRP(64)

XMY=3145
XMY05=3240
SY=12.115769
RSY=1.0/SY

=
\

—
/

DO 30 K=1ls6
JC(1sK)==1

DO 62 I=1463

DO 40 K=1,s6
JC(I+1sK)=JC(IsK)

DO 60 K=1,6
JCUI+1eK)=JC(I+14K)+1

IF(JC(I+15K)) 50950560

JC(I+1sK)=1
GO TO 62
JC(I+1sK)=-1
CONTINUE

READ INPUT TAPE 751,SN
READ INPUT TAPE 7s1sRH
WRITE OUTPUT TAPE 6,5

WRITE OUTPUT TAPE 6s23sSNyRH
WRITE OUTPUT TAPE 6,3

WRITE OUTPUT TAPE 6,4
WRITE QUTPUT TAPE 6,3

A

RRSC=1e0/(1e 0-RH¥*%2)
RRSCR=SQRT (RH#*RRSC)
RRS5C2=05%#RRSC
Cl=SQRT (0e5%(1,0+RH))
C2=SQRT (0e5%(140~RH})
CT=1.0 '

PSM=04,0

DO 72 I=1+64
Y=I-1

X={Y=-XMY) *¥RSY
XM(1)=X*¥RRSCR

XMS (T )=X*#2%RRSC2
DO 75 I=1,64

DO 75 M=1,64 '
WT(IsM)I=EXP (XM(I)#XM(M)=XMS(I)=XMS(M))
DO 95 1I=1,2

CALL NDRNI1IB(SYsQe0swW(I))
JYT(1)=Cl#W(1)+C2#W(2)+XMY05
JYT(2)=Cl*¥W(1)~C2#W(2)+XMYOQ5

/
\

i

I\

<~

DO 140 I=1,2
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Table 1 (Continued)

IF(JYT(IY)Y 9949130,100
JYT(I1)=0

GO TO 130

IF(JYT(1)=63) 13051305110
JYT(1)=63

J=JYT(IY+]

DO 140 K=146

CALL NDRN1B (1e09040sUS)
IF(JC(JeK)) 136,136,513
CU(IsK)=US-5SN :

GO TO 148

CU(1sK)2UyS+SN

CONTINUE
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PPR120.0

DO 170 [=1s+64
PWR2=0G«0

PWR1=040

DO 160 K=ls6
IF(JCIIK)})145,1645,15
PWR2=PWR2-CU(2,K)
PWR1=PHRI-CU1,K)

GO TO 169
PWR2=PWR2+CU(2,K)
PWR1=PWR1+CU(1,K)
CONTINUE
PR2(1)=PWR2%SN
PWR1=PWRY #SN
IF(PWR1-PPR1) 17051705165
PPR1=PWR1

FL(I)=PWR1

e P

SKP1=80.0-PPR1
DO 171 1=1+64
FI{I)=EXP({F1(1)+SKP1)
PPRP=040

DO 175 1=1,564

S$=040

DO 172 M=1+64
S=S+FL(M)*¥WT (T sM)

IF(S) 1739173,273
PRPI=-(10.0%%30)

GO 70 175
PRPI=PRZ2(II+ELOG(S)
IF(PRPI-PPRP) 17541755174
PPRP=PRPI

PRP(1)=PRPI
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Table 1 (Continued)

PP=0,0
PS=0.,0
DO 180 I=1,64
P=EXP (PRP ( I } +SKPR)
IF(P=PP) 17651765177
176 PS=PS+P J
GO TO 180
177 PS=PS+PP
PP=P
180 CONTINUE
PEM=PP/(PS+PP)
PSM=PSM+PEM K
AVRC=PSM/CT
AVRM=1.0-AVRC /
YT1=JYT(1)
YT2=JYT(2)
WRITE OUTPUT TAPE 651sCT,YT1sYT2sPEMsAVRM
CT=CT+1.0 ,
IF(CT=10040) 80,80570
FORMAT (E15¢89E15e85E15485E15.85E1548)
FORMAT (4H SN=E15.855Xs4HRHO=E1548)
FORMAT (1HO)
FORMAT (5Xs5HCOUNT s 11Xs3HYT1512Xs3HYT2512X s 3HPEM 11X s4HAVRM)
FORMAT (1H1)
END

SKPR=80+0-PPRP \V4
/

~.| _~
T

[ B SR CUR O




30

40

50

60
62
10

72

15
80
95

- 96 -

Table 2 Computer Program No. 2, n-=

Modified Noise Distri:ution

DIMENSION JC(64+6)1sXMI64)5XMS (654:,5CU(256) sW(2) sJYT(2)
DIMENSION WT(64564) sPR2(64).5F1ildli)is PRP (64 )

XMY=3145 —
XMY 0523240 -—7N A
SY=12.115769 /
RSY=140/5Y

DO 30 K=1,6 \
JC(1sK)==1

DO 62 I1=1,63

DO 40 K=1,6

JCUI+1sK)=JC(IsK)

DO 60 K=1s6 B
JC(I+1sK)=JC{L+1sK)+1

IF(JC(I+1,K)) 50550560

JC(I+1+K)=1

GO TO 62

JC(I+1sK)==1

CONT INUE

READ INPUT TAPE 7,1sSN,B \
READ INPUT TAPE 751,RH

READ INPUT TAPE 7,1,A

WRITE OUTPUT TAPE 645 C
WRITE OUTPUT TAPE 6525SNsBsRHsA

WRITE OUTPUT TAPE 6,3

WRITE OUTPUT TAPE 634 \
WRITE OUTPUT TAPE 6,3 /
RRSC=1e0/(1e0-RH*%2)

RRSCR=5QRT (RH#RRSC)

RRSC2=045%RRSC

C1=SQRT (0e5%(140+RH)})

C2=SQRT (0e5%(140~RH))

CT=140 D
CTM=0.0

PSI=040

PI2RB=0479788455%8

D=(A/PI2RB)#%12

G=(1.0-A)*PI2RB/A . A
DO 72 I=1,64 A
Y=1-1

X=(Y=XMY)*RSY

XM(1)=X*RRSCR E
XMS (1 )=X#%2%#RRSC2

DO 75 I=1,64

DO 75 M=1,64

WTUIsM)ZEXP (XM{I)#XM(M)=XMS(1)=XMS(M)) \

DO 95 I=1,2 A
CALL NDRN1IS({SY»sDeOsw(l)) F
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Table 2 (Continued)

JYT(1)=CL¥W(1)+C2%W (2)+XMY05 F
JYT(2)=C1¥W(1)=C2%W(2)+XMY05 V'
RFN=D A

DO 144 I1=152
IF(JYT(1)) 9951305100
99 JYT(I)=0
GO TO 130 |
100 IF(JYT(I)=63) 13051305110
110 JYT(1)=63
130 J=JYT(I)+1
DO 144 K=1s6
FP=RAM2B(0)
IF(FP-A) 131,132,132
131 U=RAM2B(0)
UM=2 « 0%B*U=B
GO TO 136 |
132 CALL NDRN1B(1+04040sUM) | G
IF(UM) 134134143
134 Q=~UM
GO TO 135
143 Q=UM
135 IF(Q-B) 13691365137
136 RFEN=RFN¥ (G+EXP (0o 5%UM*#2) )
GO TO 138
137 RFN=RFN*G
138 IF(JC(JsK)) 1394139414C
139 CU(I,K)=UM=-SN
GO TO 144
140 CU(I4K)=UM+SN

144 CONTINUE ' )
PPR1=040
DO 170 I=1y64
PWR2=040
PWR1=040
DO 160 K=1ls6
IF(JC(I oK) 114591454150
145 PWR2=PWR2-CU(2sK)
PWR1=PWR1=CU(1sK)
GO TO 160 H
150 PWR2=PWR2+CU(25K)
PWR1=PWR1+CU(1,sK)
160 CONTINUE
PR2(1)=PWR2*SN
PWR1=PWR1#5N
IF(PWR1-PPR1) 170,170,165
165 PPR1=PWR1

170 F1(I)=PWR1 \
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Table 2 (Continued)

SKP1=80.0-PPR1 /
DO 171 I=1,64
171 F1(I)=EXP(F1(I)+SKP1)
PPRP=0.0
DO 175 I=1,64
S5=0.0
DO 172 M=1,64
172 S=S+F1IMY*WT(IsM) 1
IF(S) 173,173,273
173 PRPI=-(1040%%30)
GO TO 175
273 PRPI=PR2(I)+ELOGI(S)
IF(PRPI-PPRP) 175,175,174
174 PPRP=PRPI
175 PRP(1)=PRPI
SKPR=8C+0-PPRP
PP=0.0
PS=040
DO 180 I=1,64
P=EXP(PRP (1)+SKPR)
IF(P~PP) 17651765177 J
176 PS=PS+P
GO TO 180
177 PS=PS+PP
PP=p
180 CONTINUE \/
PEM=1.0-PP/(PS+PP) ' /N
YT1=JYT(1)
YT2=JYT(2)
FN=1.0/RFN :
PET=FN*PEM | K
PSI=PSI+PEI _ ;
AVR1=PSI/CT
CTM=CTM+FN
AVRB=PS1/CTM
WRITE OUTPUT TAPE 656sCT,YT1,YT2sFN,PEI,PEMsAVRI sAVRB
CT=CT+1.0
IF(CT-100.0) 8Us80,70
FORMAT (E15485E15485E15485E15.8+E15.8)
FORMAT (4H SN=E15.855Xs2HB=E154855X s 4HRHO=E15895Xs2HA=E1548)
FORMAT (1HO)
FORMAT (6X3s2HCT s10Xs3HYT1510Xs3HYT2511Xs2HFNs10Xs3HPEL 510X »3HPEM)
110X s 4HAVRI 99X s 4HAVRB)
5 FORMAT (1H1)
6 FORMAT (1XsE124651X3E124691XsE12e651X3E124651XsE124651XsE1246,
11XsE12e691XsE1246)
END

e

W N e
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Table 3 Computer Program No. 3, n =1,

Gaussian Noise Distribution

DIMENSION JC(644+6)9X52(64)sCU(6)9sPRI(64)
XMY=31le5

XMY15=XMY+1le5
SY=XMY/2.6

RSY=10/5Y

DO 10 I=1,64

Y=1-1

XS52(1)=0ea5%( ((Y—XMY)#RSY ) *i#2)
DO 30 K=1ls6

JC(1sK)==1

DO 70 I=1+63

DO 40 K=1ly6
JCUI+1,K)=JC{IsK)

DO 60 K=1s6
JCUI+1sK)=JC(I+1sK)}+1
IF(JC(I+1sK)) 50550560
JC(I+1sK)=1

GO TO 70

JC(I+1+K)==1

CONTINUE

READ INPUT TAPE 7s1sSN
WRITE OUTPUT TAPE 6,5
WRITE OUTPUT TAPE 6+25SN
WRITE OUTPUT TAPE 6,3
WRITE OUTPUT TAPE 64
WRITE QUTPUT TAPE 6>
CT=140

PSM=0.0

CALL NDRN1B (140s0405US)
J=XMY15+S5Y#US

IF(J-1) 100,130,110

J=1

GO 70 130

IF(J=-64) 130+130s120
J=64

DO 150 K=146

CALL NDRN1B (14090.05US)
IF(JC{J9K)) 14491445146
CU(K)=US=-SN

GO 70 150

CU(K)}=US+SN

CONTINUE

PPWR=040

DO 162 1=1,64

PWR=Ce0
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Table 3 (Continued)

DO 160 K=146
IF(JC(I+sK)) 154491544156
154 PWR=PWR-CUI(K)
GO TO 160
156 PWR=PWR+CU(K)
160 CONTINUE
PWR=PWR¥SN-XS2(1)
IF(PWR=PPWR) 162s162,161
161 PPWR=PWR
162 PR(I)=PWR
SK=80e0-PPWR
PP=0.0
P5=000
DO 180G I=1+64
P=EXP(PR({I)+5K)
IF(P~PP) 170170175
170 PS=PS+P
GO TO 180
175 PS=PS+PP
PP=pP
180 CONTINUE
PEM=1.0-PP/(PS+PP)
PSM=FSM+PEM
AVRM=PSHM/CT
Yd=J-1
WRITE OUTPUT TAPE 6+6sCT 3V JsPPsPS,PEMsAVRM
CT=CT+1.0
IF(CT-10040) 80480575
FORMAT (E15e83E15e89E15485E1548)
FORMAT (4H SN=E15.8)
FORMAT (1HO)
FORMAT (5X92HCT 311X s2HYJs11X92HPP 311X 92HPS» 10X s3HPEMs9X s 4HAVRM)
FORMAT (3iil) '
FORMAT 1X5712e631X9E12e¢691XE124641X3E126691XsE124631X3E1246)
END -

CVLWN R
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Table 4 Computer Program No. 4, n=1,

Modified Noise Distribution

DIMENSION JC(6436)9sXS2(64)sCU(6)sPR(64)
XMY=31e5

XMY15=XMY+1e5

SY=XMY/2.6

RSY=1.0/SY

DO 10 I=1,64

Y=1-1

XS2(I)=0e5%( ((Y=XMY)*RSY)*#2)
DO 30 K=146

JC(1,K)=-1

DO 70 I=1,63

DO 40 K=1,6
JC({I+1sK)=JC(IsK)

DO 60 K=1+6
JCUI+1sK)=JC(I+1sK)+1
IF(JC(I+15K)) 50950960

JC(I+1,sK)=1

GO TO 70

JC(I+1sK)=-1

CONTINUE

READ INPUT TAPE 751,5N,B

READ INPUT TAPE 7,15A
WRITE OUTPUT TAPE 6,5
WRITE OUTPUT TAPE 652»SN:53)A
WRITE OUTPUT TAPE 6,3
WRITE OUTPUT TAPE 644
WRITE OUTPUT TAPE 6,3
CT=1.,0

CTM=0.0

PSI=0.0
PI2RB=04797€8455%B
D=(A/CI2RB)#%6
G=(1lal-A)*PI2RB/A

CALL NDRN1B (16050405US)
J=XMY15+SY¥*US

IF(J=-1) 100,130,110

J=1

GO TO 130

IF(J=-64) 130,130,120
J=64

RFN=D

DO 144 K=1y6
FP=RAM2B(0)

IF(FP-A) 131,132,132
U=RAM2B(0)
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Table 4 (Continued)

UM=2 , 0*B#{)-B

GO TO 136

CALL NDRN1B(1.050403sUM)
IF(UM)1344134,143

Q=-UM
GO TO 135
Q=UM

IF(Q-B) 13691364137
REN=RFN# (G+EXP (0+53%UM*%2))
GO TO 138

RFN=RFN#G

IF(JC(JsK)) 139,139,140
CU(K)=UM~SN

GO TO 144

CU(K)=UM+5SN

CONTINUE

PPWR=04,0

DO 162 I=1464

PWR=0.0

DO 160 K=1,6
IF(JCUIsK)) 1544154,156
PWR=PWR-CU(K)

GO TO 160

PWR=PWR+CU(K)

CONTINUE
PWR=PWR#SN=XS2(1)
IF(PWR-PPWR) 162516245161
PPWR=PWR

PR(I)=PWR
SK=80¢0=PPWR

PP=0,0

PS=0,.,0C

DO 18N I=1,64
P=EXP(PR(1)+SK)
IF(P=PP) 1701705175
PS=PsS+P

GO TO 18n

pPS=pPs+PP

PP=P

CONTINUE
PEM=1.0-PP/(PS+PP)
FN=1+.0/RFN

PEI=FN*PEM

PSI=PSI+PEI

AVRI=PSI/CT




£ VW

5
6
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Table 4 {Continued)

CTM=CTM+FN

AVRB=PSI/CTM

YJ=J-1

WRITE OUTPUT TAPE 6+6sCTsYJsFNsPEIsPEMsAVRI sAVRB

CT=CT+1.0

IF(CT-100.0) 80,480,575 .

FORMAT (E15489E15483E15485E1548)

FORMAT (4H SN=E1548395Xs2HB=E15.8+5X32HA=E15.8)

FORMAT (1HO)

FORMAT (6X92HCT 911Xs2HYJs11Xs2HFNs10Xs3HPEI 910X s 3HPEM» 9X s 4HAVRI s
19X s 4HAVRB) :

FORMAT (1H1)

FORMAT (1X9E12e631X3sE124631XsE12e691XsE124691XsE12e651X9E12.6,
11XsE124691X3E1246)

END




APPENDIX VI

COMPUTATION RESULTS

The minimum attainable word error probabilities with inter-bit
dependence were obtained by monte-carlo computation using the IBM 7090
computer of the University of Michigan Compu;ing Center. The results fbr '
6-bit codes are presented in Table 5 and the results for 3-bit codes are

presented in Table 6. The following symbols are used in these tables:

S/N = Signal-to-noise ratio =S/K ‘IB/Z

P ~ =Correlation coefficient between samples

L =Number of simulated demodulations performed
T = Execution time required on computer

P =Monte-carlo estimate (PZ or P_ of Chapter 4) of

3
word-error probability, PW'
As indicated in these tables, several hundred simulated de-
modulations were used (in most cases) for each estimate of word-error
probability, (More demodulations were required for 3-bit codes than for
6-bit codes due to the courseness of quantization in the 3-bit case. But,

fortunately, more can be tolerated since the computation time per de-

modulation is' much less for the 3-bit case. )

It is of interest to observe the behavior of the estimates as the
number of demodulations used in the estimate increases, Typical de-
tailed results obtained for individual demodulations and for averaging of
the results of from one to one hundred demodulations are presented in
Tables 7,8, and 9 for three different combinations of S/N and /0 . These
results are presented in.thebc;gxznputer format where . d1d2d3—---E ble
represents (. d1d2d3--—-2)'10 . That is, for example, .367010E-02
represents (. 367010)10 ~ =.00367010. If the number in the first column
(count or CT) is N, the last column gives the estimate, PZ or P3, obtained

with the pre.ceding N demodulations.
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Monte-carlo computations are not necessary with no inter-bit

dependence. For this case, bit-error probabilities, P_, may be deter-

E
mined directly by the use of gaussian tables and equation (1.4). Cor-

responding word-error probabilities, P_, for m-bit words can then be

w
- determined from:

m
P,=1-(-Py)

Results for m =6 and for m =3 are presented in Table 10,

Graphical summaries and discussions of all results are presented

in Chapter 5.
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Table 5

Computed Word-Error Probabilities for 6-Bit Words,

0
0.5
0.7
0.9
0.95

0.98

0.5
0.7

0.95

.95
98

°S o2 9o 92 920
(Vo]

n=2

L
100
200
200
200
200
200

100
300
300
300
300
300

200
300
300
300
400
400

T(sec.)

11
82
82
82
82
82

11
123
123
123
123
123

0.778
0.750
0.743
0.730
0.719
0. 685

. 589
. 600
. 563
. 556
. 538
. 489

QO O O O O o©

. 366
. 351
. 311
. 300
. 275
. 250

o © O o o O



S/N o
2.0 0 !
2.0 0.5
2.0 0.7
2.0 0.9
2.0 0.95
2.0 0.98
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Table 5 (Continued)

_L_
300
300
300
300
300
300

Total Time =

T(sec. )

35
129
129
129
129
129

2446 sec.

P

© ©2 292 9209

116

1126
1040
. 0986
. 0865
. 0783

=40, 77 min.



S/N
0.707 .

0. 707
0.707
0. 707
0.707
0.707

1.414
1,414
1.414
1.414
1.414
1.414

Computed Word-Error Probabilities For
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Table 6

_p_

0
0.5
0.7
0.9
0.95
0.98

0.5
0.7
0.9
0.95
0.98

0.5
0.7
0.9

0,95
0.98

3-Bit Words, n=2

L
700
400
400
400
400
400

700
300
300
300
300
300

1500
400
400
400
400
400

T(sec. )

18

15. 6
15. 6
15. 6
15.6
15. 6

18

11.7
11,7
11.7
11,7
11.7

42

15. 6
15. 6
15. 6
15,6
15. 6

.416

.415
.415
. 367
. 356
. 298

. 302
. 281
. 268
. 235
. 219
. 177

. 153
. 146
. 124
. 0925
. 0860
. 0666



S/N
2,0
2.0
2.0
2.0
2.0
2.0

Table 6 (Continued)

o

0
0.5
0.7
0.9
0.95
0. 98

Total Time =
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L

1500
- 400

400
400
400
400

‘T (sec.) P
42 . 0477
19,4 . 0449
19. 4 . 0372
19.4 . 0262
19.4 . 0187

19.4 . 0159

431.5 sec. =7.19 min.
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Table 7

Detailed Results For S/N =1.0, £~=0.9
[

CT =No. .of PEM = Py = 1-Q AVRM =P2
Demodulations
1 . 37659343E 00 . 62340657E 00
2 . 66810828E 00 .47764915E 00
3 .43912477E 00 .50539118E 00
4 . 13976964E 00 .59410097E 00
5 . 23474571E 00 .62833164E 00
6 . 13800351E 00 .66727578E 00
7 . 38229535E 00 .66019420E 00
8 . 21535571E 00 . 67575046E 00
9 . 29519363E 00 . 67897889E 00
10 . 34163614E 00 .67691739E 00
11 . 57835601E 00 .65371072E 00
12 .47914741E 00 .64263921E 00
13 .48944151E 00 .63247915E 00
14 . 39589334E 00 .63045255E 00
15 . 69615895E 00 .60867845E 00
16 . 64513706E 00 . 59281498E 00
17 .48543736E 00 . 58821190E 00
18 . 51775474E 00 . 58232487E 00
19 . 3418154 3E 00 .58631749E 00
20 . 57160394E 00 . 57842142E 00
21 . 22904922E 00 . 58758949E 00
22 . 20530006E 00 . 59700360E 00
23 . 31439529E 00 . 60085583E 00
24 . 28460506E 00 . 60562829E 00
25 . 53445961E 00 . 60002477E 00
26 . 61289126E 00 . 59183570E 00
27 .78004861E 00 .57806221E 00




CT =No. of
Demodulations

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
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Table 7 (Continued)

PEM =p, =1-Q

.45510860E 00
. 24858699E 00
.49126271E 00
. 36532862E 00
. 21306201E 00
. 33297767E 00
.42444362E 00
.42559066E 00
.45955130E 00
.53134900E 00
. 33658686E 00
. 39330582E 00
. 66824 244E 00
.45655217E 00
.17261373E 00
.47958811E 00
. 3510814 3E 00
.58004863E 00
. 23956098E 00
. 30785554E 00
.62420302E 00
.43415309E 00
. 74533676E 00
.28134660E 00
.15484132E 00
. 35085720E 00
.81592303E 00
.57752253E 00

AVRM =P

57687754E 00

. 58289601E 00
. 58042405E 00
.58217397E 00
. 58857284E 00
.59095010E 00
. 59049734E 00
. 59003769E 00
. 58866022E 00
.58541673E 00
. 58746926E 00
.58796222E 00
.58155711E 00
.58062761E 00

.

58650283E 00

. 58496583E 00
. 58641930E 00

58272001E 00

.58658347E 00
. 58882946E 00
. 58439128E 00
. 58401282E 00
.57742584E 00
.58019501E 00
. 58529046E 00
. 58649523E 00
. 57904304E 00
.57619639E 00
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Table 7 (Continued)

CT =No. of PEM = p,, =1-Q AVRM =P
Demodulations M 2
56 . 65355828E 00 . 57209363E 00
57 . 31350663E 00 . 57410064E 00
58 . 69666915E 00 .. 56943220E 00
59 .49165632E 00 . 56839680E 00
60 . 44067775E 00 . 56824556E 00
61 . 76408508E 00 .56279752E 00
62 . 76661388E 00 . 5574844 3E 00
63 . 72934165E 00 . 55293164E 00
64 . 17451296E 00 .55719032E 00
65 . 24180973E 00 . 56028263E 00
66 .67112135E 00 .55677652E 00
67 . 35238759E 00 .55813228E 00
68 .44011146E 00 . 55815810E 00
69 .51846281E 00 .55704766E 00
70 . 35828228E 00 . 55825723E 00
71 .83712418E 00 . 55268848E 00
72 . 31466457E 00 . 55453081E 00
73 .61190619E 00 . 55225085E 00
74 .42824259E 00 .55251446E 00
75 . 30549955E 00 . 55440761E 00
76 . 74486751E 00 . 55046978E 00
77 .40557059E 00 .55104069E 00
78 . 56534718E 00 . 54954854E 00
79 . 81449752E 00 . 54494036E 00
80 .43801969E 00 .54515336E 00
81 .45683171E 00 .54512887E 00
82 .41739225E 00 . 54558592E 00




CT =No. of
Demodulations

83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
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Table 7 (Continued)

PEM = pM =1-Q

. 29496267E 00
. 17571313E 00
.45933786E 00
.91628870E 00
. 53854378E 00
.41588623E 00
. 38474651E 00
. 34859136E 00
. 23439055E 00
. 15104613E 00
. 30322347E 00
.44172963E 00
. 26579398E 00
.70673721E 00
. 37986711E 00
. 78444912E 00
. 23153388E 00
. 13079321E 00

AVRM =P

. 54750703E 00
. 55080203E 00
. 55068274E 00
.54525284E 00
. 54428966E 00
.54474221E 00
. 54553448E 00
.54671086E 00
. 54911634E 00
.55237544E 00
.55392815E 00
.55397435E 00
.55587152E 00
.55313601E 00
.55382670E 00
. 55037491E 00
. 55257785E 00
.55574415E 00
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Table 8

Detailed Results For S/N =2.0, £©=0.98
[

CT =No, of PEI =Q % PEM =Q AVRI =P,
Demodulations h
1 . 887244E-02 . 121695E-01 . 887244E-02
2 . 122609E-01 .877047E-02 . 105667E-01
3 . 105259E-01 .396113E-01 .105531E-01
4 . 167040E-03 . 175603E-03 . 795658E-02
5 . 248927E-02 .436259E-02 . 686312E-02
6 . 195185E-02 . 945304E-02 . 604457E-02
7 . 196621E 00 . 367094E 00 . 332697E-01
8 . 339279E-02 . 300901E-02 . 295351E-01
9 . 200014E 00 .413194E 00 .484772E-01
10 . 384768E 00 . 328324E 00 .821063E-01
11 . 923001E-02 . 105449E-01 . 754812E-01
12 . 298305E-01 .462027E-01 .716770E-01
13 . 219430E-03 . 126049E-03 . 661802E-01
14 . 356502E-03 . 264585E-03 . 614785E-01
15 . 258250E-03 . 266649E-03 . 573972E-01
16 . 354243E-02 . 161722E-02 . 540313E-01
17 .916238E-02 . 534345E-02 .513919E-01
18 . 286576E 00 . 212577E 00 . 644577E-01
19 .922903E-03 . 100849E-02 .611137E-01
20 . 123828E 00 . 137772E 00 . 642494E-01
21 . 659648E-02 .118151E-01 . 615041E-01
22 . 238620E-01 . 203225E-01 .597931E-01
23 . 247468E-02 . 223776E-02 . 573009E-01
24 .474423E-01 . 246194E-01 . 568902E-01
25 . 129946E-04 . 137761E-04 .546151E-01
26 . 132678E 00 . 211830E 00 .576175E-01
27 . 237831E-01 .565135E-01 .563644E-01




CT =No. of

Demodulations

28
29
30
31
32
33
34
35
36
37
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Table 8 (Continued)

PEI =Q —h;
h

. 393097E-02
. 184877E 00
. 165717E 00
.521823E-01
.863306E-01
184107E-01
.459159E-02
.411653E 00
. 185737E 00
.446248E-02
. 101331E 00
. 556297E-02
. 565422E-02
. 171904E-01
. 226738E 00
. 645816E-02
. 326665E-01
. 208019E-02
. 147161E-01
501775E-01
. 338054E-03
.616801E-01

. 227685E-01

. 686395E-02
. 297635E 00
. 273606E 00
.457260E-02
. 198230E-01

PEM =Q

AVRI =P
3

. 399855E-02
.458020E 00
. 109082E 00

327755E 00

. 398227E 00
.801113E-02
.420560E-02

571774E 00

. 101851E 00
.496939E-02
. 139497E 00
. 234813E-01
.251931E-01
. 133176E-01
. 306709E 00
. 123730E-01
. 549806E-01
. 222058E-02
.820509E-02
.334110E-01
. 238009E-03
. 122926E 00
. 226173E-01
.677930E-02
.369936E 00
.305751E 00
.245342E-02
. 390167E-01

. 544918E-01
. 589878E-01
.625455E-01
.622112E-01
. 629649E-01
.616148E-01
. 599376E-01
. 699866E-01
.732019E-01
.713441E-01
.721332E-01
.704263E-01
. 688070E-01
.675480E-01
.713383E-01
. 698294E-01
. 689848E-01
.674980E-01
.663506E-01
.660065E-01
.646384E-01
. 645780E-01
.637418E-01
.626266E-01
.671460E-01
.710414E-01
.698105E-01
. 689017E-01
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Table 8 (Continued)

CT =No. of PEI =Q ‘L* PEM =Q AVRI = P3
] Demodulations h

56 . 290463E-03 . 397258E-03 .676765E-01
57 .694242E-02 . 385579E-02 .666110E-01
58 .190171E-01 . 238055E-01 .657904E-01
59 .479549E-02 .451062E-02 .64756E-01
60 . 192055E 00 .606313E 00 .668782E-01
61 . 190934E 00 .341179E 00 .689119E-01
62 . 164464E-01 .112258E-01 .680657E-01
63 . 768579E-01 .434691E-01 .682053E-01
64 . 169490E-02 .163029E-02 .671660E-01

- 65 .584541E 00 . 253737E 00 .751256E-01
66 .538745E-01 . 315460E 00 . 748037E-01
67 .909178E-01 . 546219E-01 . 750442E-01
68 .231297E 00 . 274067E 00 .773420E-01
09 .444353E-01 .120110E CO .768651E-01
70 . 227451E-01 . 254028E-01 .760919E-01
71 . 157747E-01 . 137936E-01 .752424E-01
12 .181212E 00 .413611E 00 .767142E-01
73 .364642E-04 . 256747E-04 .756638E-01
74 .817412E-01 .110805E 00 .757460E-01
75 . 158362E 00 .269423E 00 .768475E-01
76 .436904E-02 .277011E-01 . 758938E-01
17 . 273002E-02 . 198131E-02 .749437E-01
78 .318554E-01 . 187426E-01 .743912E-01
79 . 228797E-01 .212824E-01 .737392E-01
80 .238722E 00 . 146937E 00 .758015E-01
81 .692196E-01 . 302460E-01 .757202E-01

82 . 785796E-05 . 226572E-04 . 747969E-01
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Table 8 (Continued)

CT =No. of PEI=Q = PEM =Q AVRI =P,
Demodulations h
83 .419095E-01 . 195260E-01 . 744007E-01
84 . 143300E-01 . 144276E-01 . 736855E-01
85 . 150250E-01 . 358517E-01 . 729954E-01
86 . 373712E 00 . 445742E 00 . 764921E-01
87 . 443849E-02 . 269791E-02 . 756639E-01
88 . 563731E 00 .423997E 00 .812101E-01
89 . 109039E-01 . 109618E 00 .804202E-01
90 . 196468E 00 . 558084E 00 .817096E-01
91 . 150477E-02 . 319158E-02 .808282E-01
92 . 311043E-02 . 113983E-01 .799835E-01
93 . 208261E-03 . 145949E-03 .791257E-01
94 . 964372E-02 . 101269E-01 . 783865E-01
95 . 142038E-01 . 800990E-02 . 777109E-01
96 . 198894E-01 . 443432E-01 . 771086 E-01
97 . 237481E 00 . 480541E 00 . 787619E-01
98 .521661E-02 .722164E-02 . 780114E-01
99 . 693649E-01 . 275221E-01 .779241E-01

100 .813598E-03 . 225443E-02 . 771530E-01
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Table 9

Detailed Results For S/N =1.414, ©=0(orn =1)
I

CT =No.- of PEM =Q AVRM = PZ
Demodulations

1 .838906E 00 .838906E 00
-2 .496383E-01 .444272E 00
3 . 758264E 00 . 548936E 00
4 .763433E-01 .430788E 00
5 . 146204E 00 . 373871E 00
6 . 382893E 00 . 375375E 00
7 .292061E 00 . 363473E 00
8 .662838E 00 .400893E 00
9 . 230133E 00 . 381920E 00
10 . 602794E-01 . 349756E 00
11 . 281032E 00 . 343508E 00
12 . 555666E-01 . 319513E 00
13 . 205799F 00 .310766E 00
14 . 282232E-01 . 290584E 00
15 .430902E 00 .299939E 00
16 . 381355E 00 . 305027E 00
17 . 385803E 00 . 309779E 00
18 .408660E 00 . 315272E 00
19 .653269E 00 . 333062E 00
20 . 208512E 00 . 326834E 00
21 .805447E 00 . 349625E 00
22 .493588E 00 . 356169E 00
23 .488309E 00 .361914E 00
24 .211028E 00 . 355627E 00
25 . 200154E 00 . 349408E 00
26 .566857E-01 . 338150E 00

27 . 324982E 00 .337662E 00
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Table 9 (Continued)

CT =No. of PEM =Q | AVRM = PZ
Demodulations
28 . 114252E 00 . 329683E 00
29 . 189953E 00 . 324865E 00
30 .604415E-01 .316051E 00
31 .431587E 00 . 319778E 00
32 . 336366E 00 . 320296E 00
33 . 135335E 00 .314691E 00
34 . 194643E 00 .311160E 00
35 .410337E 00 . 313994E 00
36 . 580940E 00 . 321409E 00
37 . 289787E 00 . 320555E 00
38 . 290345E 00 .319760E 00
39 . 122533E 00 . 314702E 00
40 . 259594E 00 .313325E 00
41 .211219E 00 .310834E 00
42 .T726527E 00 .320732E 00
43 .466344E 00 .324118E 00
44 .433417E-01 .317737E 00
45 . 642568E 00 . 324955E 00
46 .400129E 00 . 326590E 00
47 .451392E 00 . 329245E 00
48 . 101668E-01 . 322597E 00
49 .516780E 00 .326560E 00
50 .657325E 00 . 333176E 00
51 . 262141E 00 %&531783E 00
52 .420233E 00 . 333484E 00
53 .445581E 00 . 335599E 00
54 .121936E 00 .331642E 00
55 .456685E 00 .333916E 00

56 .487427E 00 .336657E 00



CT =No. of

Demodulations

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
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Table 9 (Continued)

PEM =Q

.806038E 00
.400024E 00
.423723E 00
.446713E 00
.605045E 00
.590971E 00
. 285580E 00
.371234E 00
.562408E 00
.826602E-01
. 294445E-01
. 370704E 00
. 182951E 00
.422965E 00
.519226E 00
.618235E 00
.275129E 00
.678303E 00
.278614E 00
. 294648E 00
.251829E-01
.695051E 00
. 193674E 00
.790583E 00
. 153728E 00
.547047E 00
. 702893E-01
.731346E 00
.689068E 00

AVRM =P

. 344892E 00
. 345842E 00
.347162E 00
. 348821E 00
. 353022E 00
. 356860E 00
. 355728E 00
. 355970E 00
. 359146E 00
. 354957E 00
. 350099E 00
. 350402E 00
. 347975E 00
. 349046E 00
. 351443E 00
. 355149E 00
. 354052E 00
. 358434E 00
. 357370E 00
. 356545E 00
.352241E 00
. 356636E 00
. 354573E 00
. 360024E 00
. 357477E 00
. 359789E 00
.356301E 00
. 360765E 00
. 364628E 00



CT =No. of

Demodulations
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Table 9 (Continued)

PEM =Q

86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

. 266668E 00
.360057E 00
.708612E-01
.359297E 00
.706486E-01
. 244928E 00
. 396508E 00
. 759087E-01
.472791E 00
. 312459E 00
. 599942E 00
. 238840E 00
.665262E 00
.662327E 00
. 215951E 00

AVRM =P

. 363489E 00
. 363449E 00
.360124E 00
. 360115E 00
. 356899E 00
. 355668E 00
. 356112E 00
. 353099E 00
. 354373E 00
. 353931E 00
. 356494E 00
. 355281E 00
. 358444E 00
. 361514E 00
. 360058E 00
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Table 10

Calculated Word-Error Probabilities For No Inter-Bit

Dependence
SIN= —3> — Py P, (3-bits) P (6-bits)
K VB/Z

707 (-3 db) .24 . 561 . 808

1.0 (0 db) _ . 159 . 404 . 645
1.414 (+3 db) . 079 .218 .39
2,0 (+ 6 db) . 0228 . 067 .13
3.0 (+9.54 db) . 00135 . 00405 . 0081
4,0 (+12 db) . 000032 . 000096 . 00019



Reference

Number

1
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